{"title":"Hederagenin reduces Aβ-induced oxidative damage, decreases Aβ deposition, and promotes cell survival by the P13K/Akt signaling pathway.","authors":"Kunpeng Xie, Hao Wang, Xin Yao, Jialin Lv, Qingyu Wang, Yu Zhao, Shuhan Yang, Lipeng Xu, Yuhua Shi, Jiliang Hu, Yaming Shan","doi":"10.1093/jleuko/qiae124","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a neurodegenerative disease characterized by memory loss and cognitive impairment. β-Amyloid (Aβ) is one of the typical pathological features of AD, and its accumulation leads to neuronal death from oxidative stress. Here, we found that hederagenin (HG), a natural product, exhibits antitumor, anti-inflammatory, antidepressant, antineurodegenerative biological activities. However, whether HG has anti-Aβ activity remains unclear. Based on the characteristics of HG, it is hypothesized that HG has biological activity against Aβ injury. Therefore, Aβ-injured SH-SY5Y cells were constructed, and the protective effect of HG against Aβ injury was further evaluated using Caenorhabditis elegans. The results showed that HG increased superoxide dismutase activity, effectively reduced Aβ-induced oxidative damage, and reduced apoptosis via the PI3 K/Akt signaling pathway. HG inhibited Aβ deposition and delayed senescence and paralysis in the C. elegans strain, CL4176. HG showed inhibitory effects on Aβ; therefore, more natural active products are expected to be applied in AD therapy.</p>","PeriodicalId":16186,"journal":{"name":"Journal of Leukocyte Biology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leukocyte Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jleuko/qiae124","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by memory loss and cognitive impairment. β-Amyloid (Aβ) is one of the typical pathological features of AD, and its accumulation leads to neuronal death from oxidative stress. Here, we found that hederagenin (HG), a natural product, exhibits antitumor, anti-inflammatory, antidepressant, antineurodegenerative biological activities. However, whether HG has anti-Aβ activity remains unclear. Based on the characteristics of HG, it is hypothesized that HG has biological activity against Aβ injury. Therefore, Aβ-injured SH-SY5Y cells were constructed, and the protective effect of HG against Aβ injury was further evaluated using Caenorhabditis elegans. The results showed that HG increased superoxide dismutase activity, effectively reduced Aβ-induced oxidative damage, and reduced apoptosis via the PI3 K/Akt signaling pathway. HG inhibited Aβ deposition and delayed senescence and paralysis in the C. elegans strain, CL4176. HG showed inhibitory effects on Aβ; therefore, more natural active products are expected to be applied in AD therapy.
期刊介绍:
JLB is a peer-reviewed, academic journal published by the Society for Leukocyte Biology for its members and the community of immunobiologists. The journal publishes papers devoted to the exploration of the cellular and molecular biology of granulocytes, mononuclear phagocytes, lymphocytes, NK cells, and other cells involved in host physiology and defense/resistance against disease. Since all cells in the body can directly or indirectly contribute to the maintenance of the integrity of the organism and restoration of homeostasis through repair, JLB also considers articles involving epithelial, endothelial, fibroblastic, neural, and other somatic cell types participating in host defense. Studies covering pathophysiology, cell development, differentiation and trafficking; fundamental, translational and clinical immunology, inflammation, extracellular mediators and effector molecules; receptors, signal transduction and genes are considered relevant. Research articles and reviews that provide a novel understanding in any of these fields are given priority as well as technical advances related to leukocyte research methods.