Pax7 is involved in leucophore formation in goldfish and gene knockout improves the transparency of transparent goldfish.

IF 2.5 3区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fish Physiology and Biochemistry Pub Date : 2024-08-01 Epub Date: 2024-05-31 DOI:10.1007/s10695-024-01364-z
Takumi Mouri, Syunsuke Usa, Toshinobu Tokumoto
{"title":"Pax7 is involved in leucophore formation in goldfish and gene knockout improves the transparency of transparent goldfish.","authors":"Takumi Mouri, Syunsuke Usa, Toshinobu Tokumoto","doi":"10.1007/s10695-024-01364-z","DOIUrl":null,"url":null,"abstract":"<p><p>Lines with few or no pigment cells have been established in fishes, and these lines are useful for bioimaging. The transparent goldfish (tra) line previously established by N-ethyl-N-nitrosourea (ENU) mutagenesis is also suitable for such experiments. However, in the case of tra, leucophores form in the adult fish, making it difficult to observe the organs inside body from outside the body. In this study, we attempted to create a knockout line of the pax7a and pax7b genes, which are thought to be involved in the formation of leucophores, to further improve the transparency of tra strain.Mutations were introduced by microinjection of the CRISPR/Cas9 mixture into single-cell embryos, mutant individuals were found in F0, and the next generation was generated to confirm the mutation patterns. As a result, multiple mutation patterns, including knockout, were obtained. The same pattern of knockout F1 with pax7a and pax7b mutations was crossed to generate a homozygous knockout in F2.In the resulting pax7b<sup>-/-</sup> (tra) fish but not in pax7a<sup>-/-</sup> (tra) fish, the number of leucophores was reduced compared to that in tra, and the transparency of the body was improved. It was suggested that pax7b plays an important role in leucophore formation in goldfish. The established transparent pax7b<sup>-/-</sup> (tra) goldfish line will be a useful model for bioimaging of the body interior.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":" ","pages":"1701-1710"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10695-024-01364-z","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lines with few or no pigment cells have been established in fishes, and these lines are useful for bioimaging. The transparent goldfish (tra) line previously established by N-ethyl-N-nitrosourea (ENU) mutagenesis is also suitable for such experiments. However, in the case of tra, leucophores form in the adult fish, making it difficult to observe the organs inside body from outside the body. In this study, we attempted to create a knockout line of the pax7a and pax7b genes, which are thought to be involved in the formation of leucophores, to further improve the transparency of tra strain.Mutations were introduced by microinjection of the CRISPR/Cas9 mixture into single-cell embryos, mutant individuals were found in F0, and the next generation was generated to confirm the mutation patterns. As a result, multiple mutation patterns, including knockout, were obtained. The same pattern of knockout F1 with pax7a and pax7b mutations was crossed to generate a homozygous knockout in F2.In the resulting pax7b-/- (tra) fish but not in pax7a-/- (tra) fish, the number of leucophores was reduced compared to that in tra, and the transparency of the body was improved. It was suggested that pax7b plays an important role in leucophore formation in goldfish. The established transparent pax7b-/- (tra) goldfish line will be a useful model for bioimaging of the body interior.

Abstract Image

Pax7 参与金鱼白膜的形成,基因敲除可提高透明金鱼的透明度。
在鱼类中已经建立了很少或没有色素细胞的品系,这些品系可用于生物成像。以前通过 N-乙基-N-亚硝基脲(ENU)诱变建立的透明金鱼(tra)品系也适用于此类实验。然而,透明金鱼的成鱼体内会形成白细胞,因此很难从体外观察到体内器官。在这项研究中,我们试图创建一个pax7a和pax7b基因的基因敲除品系,以进一步提高tra品系的透明度。通过将CRISPR/Cas9混合物显微注射到单细胞胚胎中引入突变,在F0中发现突变个体,并产生下一代来确认突变模式。结果,获得了包括基因敲除在内的多种突变模式。在产生的 pax7b-/- (tra)鱼中,与 pax7a-/- (tra)鱼相比,白点数量减少,身体透明度提高。研究表明,pax7b在金鱼白点形成过程中起着重要作用。已建立的透明 pax7b-/- (tra)金鱼品系将成为身体内部生物成像的有用模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fish Physiology and Biochemistry
Fish Physiology and Biochemistry 农林科学-生化与分子生物学
CiteScore
5.60
自引率
6.90%
发文量
106
审稿时长
4 months
期刊介绍: Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信