How much could improving photosynthesis increase crop yields? A call for systems-level perspectives to guide engineering strategies

IF 7.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Megan L Matthews , Steven J Burgess
{"title":"How much could improving photosynthesis increase crop yields? A call for systems-level perspectives to guide engineering strategies","authors":"Megan L Matthews ,&nbsp;Steven J Burgess","doi":"10.1016/j.copbio.2024.103144","DOIUrl":null,"url":null,"abstract":"<div><p>Global yield gaps can be reduced through breeding and improved agronomy. However, signs of yield plateaus from wheat and rice grown in intensively farmed systems indicate a need for new strategies if output is to continue to increase. Approaches to improve photosynthesis are suggested as a solution. Empirical evidence supporting this approach comes from small-scale free-CO<sub>2</sub> air enrichment and transgenic studies. However, the likely achievable gains from improving photosynthesis are less understood. Models predict maximum increases in yield of 5.3–19.1% from genetic manipulation depending on crop, environment, and approach, but uncertainty remains in the presence of stress. This review seeks to provide context to the rationale for improving photosynthesis, highlight areas of uncertainty, and identify the steps required to create more accurate projections.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"88 ","pages":"Article 103144"},"PeriodicalIF":7.1000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924000806","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Global yield gaps can be reduced through breeding and improved agronomy. However, signs of yield plateaus from wheat and rice grown in intensively farmed systems indicate a need for new strategies if output is to continue to increase. Approaches to improve photosynthesis are suggested as a solution. Empirical evidence supporting this approach comes from small-scale free-CO2 air enrichment and transgenic studies. However, the likely achievable gains from improving photosynthesis are less understood. Models predict maximum increases in yield of 5.3–19.1% from genetic manipulation depending on crop, environment, and approach, but uncertainty remains in the presence of stress. This review seeks to provide context to the rationale for improving photosynthesis, highlight areas of uncertainty, and identify the steps required to create more accurate projections.

改善光合作用能使作物增产多少?呼吁从系统层面指导工程战略。
通过育种和改进农艺可以缩小全球产量差距。然而,在集约化耕作系统中种植的小麦和水稻出现了产量停滞不前的迹象,这表明如果要继续提高产量,就需要采取新的战略。改善光合作用的方法被认为是一种解决方案。支持这种方法的经验证据来自小规模的自由二氧化碳空气富集和转基因研究。然而,人们对提高光合作用可能带来的收益了解较少。根据作物、环境和方法的不同,模型预测基因操作可使产量最大增加 5.3-19.1%,但在压力下仍存在不确定性。本综述旨在提供改善光合作用的基本原理,强调存在不确定性的领域,并确定做出更准确预测所需的步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current opinion in biotechnology
Current opinion in biotechnology 工程技术-生化研究方法
CiteScore
16.20
自引率
2.60%
发文量
226
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time. As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows. COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信