{"title":"Robustness of response-adaptive randomization.","authors":"Xiaoqing Ye, Feifang Hu, Wei Ma","doi":"10.1093/biomtc/ujae049","DOIUrl":null,"url":null,"abstract":"<p><p>Doubly adaptive biased coin design (DBCD), a response-adaptive randomization scheme, aims to skew subject assignment probabilities based on accrued responses for ethical considerations. Recent years have seen substantial advances in understanding DBCD's theoretical properties, assuming correct model specification for the responses. However, concerns have been raised about the impact of model misspecification on its design and analysis. In this paper, we assess the robustness to both design model misspecification and analysis model misspecification under DBCD. On one hand, we confirm that the consistency and asymptotic normality of the allocation proportions can be preserved, even when the responses follow a distribution other than the one imposed by the design model during the implementation of DBCD. On the other hand, we extensively investigate three commonly used linear regression models for estimating and inferring the treatment effect, namely difference-in-means, analysis of covariance (ANCOVA) I, and ANCOVA II. By allowing these regression models to be arbitrarily misspecified, thereby not reflecting the true data generating process, we derive the consistency and asymptotic normality of the treatment effect estimators evaluated from the three models. The asymptotic properties show that the ANCOVA II model, which takes covariate-by-treatment interaction terms into account, yields the most efficient estimator. These results can provide theoretical support for using DBCD in scenarios involving model misspecification, thereby promoting the widespread application of this randomization procedure.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae049","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Doubly adaptive biased coin design (DBCD), a response-adaptive randomization scheme, aims to skew subject assignment probabilities based on accrued responses for ethical considerations. Recent years have seen substantial advances in understanding DBCD's theoretical properties, assuming correct model specification for the responses. However, concerns have been raised about the impact of model misspecification on its design and analysis. In this paper, we assess the robustness to both design model misspecification and analysis model misspecification under DBCD. On one hand, we confirm that the consistency and asymptotic normality of the allocation proportions can be preserved, even when the responses follow a distribution other than the one imposed by the design model during the implementation of DBCD. On the other hand, we extensively investigate three commonly used linear regression models for estimating and inferring the treatment effect, namely difference-in-means, analysis of covariance (ANCOVA) I, and ANCOVA II. By allowing these regression models to be arbitrarily misspecified, thereby not reflecting the true data generating process, we derive the consistency and asymptotic normality of the treatment effect estimators evaluated from the three models. The asymptotic properties show that the ANCOVA II model, which takes covariate-by-treatment interaction terms into account, yields the most efficient estimator. These results can provide theoretical support for using DBCD in scenarios involving model misspecification, thereby promoting the widespread application of this randomization procedure.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.