{"title":"Differential protein expression and metabolite profiling in glaucoma: Insights from a multi-omics analysis","authors":"Jeong-hun Mok, Do Young Park, Jong Chul Han","doi":"10.1002/biof.2079","DOIUrl":null,"url":null,"abstract":"<p>Various substances within the aqueous humor (AH) can directly or indirectly impact intraocular tissues associated with intraocular pressure (IOP), a critical factor in glaucoma development. This study aims to investigate individual changes in these AH substances and the interactions among altered components through a multi-omics approach. LC/MS analysis was conducted on AH samples from patients with exfoliation syndrome (XFS, <i>n</i> = 5), exfoliation glaucoma (XFG, <i>n</i> = 4), primary open-angle glaucoma (POAG, <i>n</i> = 11), and cataracts (control group, <i>n</i> = 7). Subsequently, differentially expressed proteins and metabolites among groups, alterations in their network interactions, and their biological functions were examined. Both data-independent acquisition and data-dependent acquisition methods were employed to analyze the AH proteome and metabolome, and the results were integrated for a comprehensive analysis. In the proteomics analysis, proteins upregulated in both the XFG and POAG groups were associated with lipid metabolism, complement activation, and extracellular matrix regulation. Metabolomic analysis highlighted significant changes in amino acids related to antioxidant processes in the glaucoma groups. Notably, VTN, APOA1, C6, and L-phenylalanine exhibited significant alterations in the glaucoma groups. Integration of individual omics analyses demonstrated that substances associated with inflammation and lipid metabolism, altered in the glaucoma groups, showed robust interactions within a complex network involving PLG, APOA1, and L-phenylalanine or C3, APOD, and L-valine. These findings offer valuable insights into the molecular mechanisms governing IOP regulation and may contribute to the development of new biomarkers for managing glaucoma.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":"50 6","pages":"1220-1235"},"PeriodicalIF":5.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627470/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biof.2079","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Various substances within the aqueous humor (AH) can directly or indirectly impact intraocular tissues associated with intraocular pressure (IOP), a critical factor in glaucoma development. This study aims to investigate individual changes in these AH substances and the interactions among altered components through a multi-omics approach. LC/MS analysis was conducted on AH samples from patients with exfoliation syndrome (XFS, n = 5), exfoliation glaucoma (XFG, n = 4), primary open-angle glaucoma (POAG, n = 11), and cataracts (control group, n = 7). Subsequently, differentially expressed proteins and metabolites among groups, alterations in their network interactions, and their biological functions were examined. Both data-independent acquisition and data-dependent acquisition methods were employed to analyze the AH proteome and metabolome, and the results were integrated for a comprehensive analysis. In the proteomics analysis, proteins upregulated in both the XFG and POAG groups were associated with lipid metabolism, complement activation, and extracellular matrix regulation. Metabolomic analysis highlighted significant changes in amino acids related to antioxidant processes in the glaucoma groups. Notably, VTN, APOA1, C6, and L-phenylalanine exhibited significant alterations in the glaucoma groups. Integration of individual omics analyses demonstrated that substances associated with inflammation and lipid metabolism, altered in the glaucoma groups, showed robust interactions within a complex network involving PLG, APOA1, and L-phenylalanine or C3, APOD, and L-valine. These findings offer valuable insights into the molecular mechanisms governing IOP regulation and may contribute to the development of new biomarkers for managing glaucoma.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.