Ting-Ting Hong, Fei Hu, Wen-Jie Ge, Rui Zhang, Juan Du, Kiran Thakur, Shun-Ming Tang, Zhao-Jun Wei
{"title":"Selenium Treatment Alleviates the Inhibition Caused by Nep-L Gene Knockdown in Silkworm (Bombyx mori).","authors":"Ting-Ting Hong, Fei Hu, Wen-Jie Ge, Rui Zhang, Juan Du, Kiran Thakur, Shun-Ming Tang, Zhao-Jun Wei","doi":"10.1007/s12011-024-04248-8","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have emphasized the beneficial effects of 50 μM selenium (Se) on the growth and development of the silkworm, Bombyx mori; however, less is known about its underlying mechanism. To unravel the effect of 50 μM Se on the silkworms with neutral endopeptidase 24.11-like gene (NEP-L) knockdown, we injected small interfering RNA (siRNA) into the body cavity of silkworms. Phenotypic characteristics, mRNA expression of the Nep-L gene, and enriched Se content were evaluated in silkworms from each treatment group. After injecting Nep-L siRNA, the body weight, cocoon quality (cocoon weight, cocoon shell weight, and cocoon shell ratio), and egg production of silkworms were significantly reduced, without any significant effect on egg laying number. However, Se treatment could significantly alleviate the inhibition of body weight, and cocoon quality, without significant effects on egg laying number and production. In addition, the gene knockdown increased Se content in the B. mori. On the molecular level, the targeted Nep-L gene was inhibited significantly by siRNA interference, essentially with the strongest effect at 24 h after RNAi, followed by steady recovery. Among the three fragments, the siRNA of Nep-L-3 was the most effective in interfering with target gene expression. Nep-L gene showed the highest expression in Malpighian tubules (MTs). Both at the phenotypic and genotypic levels, our results show that Nep-L knockdown can exert a significant inhibitory effect on silkworms, and 50 μM Se can reverse the negative effect, which provides a practical prospect for strengthening the silkworm food industry.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"1656-1666"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04248-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies have emphasized the beneficial effects of 50 μM selenium (Se) on the growth and development of the silkworm, Bombyx mori; however, less is known about its underlying mechanism. To unravel the effect of 50 μM Se on the silkworms with neutral endopeptidase 24.11-like gene (NEP-L) knockdown, we injected small interfering RNA (siRNA) into the body cavity of silkworms. Phenotypic characteristics, mRNA expression of the Nep-L gene, and enriched Se content were evaluated in silkworms from each treatment group. After injecting Nep-L siRNA, the body weight, cocoon quality (cocoon weight, cocoon shell weight, and cocoon shell ratio), and egg production of silkworms were significantly reduced, without any significant effect on egg laying number. However, Se treatment could significantly alleviate the inhibition of body weight, and cocoon quality, without significant effects on egg laying number and production. In addition, the gene knockdown increased Se content in the B. mori. On the molecular level, the targeted Nep-L gene was inhibited significantly by siRNA interference, essentially with the strongest effect at 24 h after RNAi, followed by steady recovery. Among the three fragments, the siRNA of Nep-L-3 was the most effective in interfering with target gene expression. Nep-L gene showed the highest expression in Malpighian tubules (MTs). Both at the phenotypic and genotypic levels, our results show that Nep-L knockdown can exert a significant inhibitory effect on silkworms, and 50 μM Se can reverse the negative effect, which provides a practical prospect for strengthening the silkworm food industry.
期刊介绍:
Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.