{"title":"A sustainable, eco-friendly Tb/Eu-modified HOFs for ultrasensitive detection and efficient adsorption of carcinogens in complex water environments","authors":"Zhongqian Hu, Bing Yan","doi":"10.1016/j.jhazmat.2024.134742","DOIUrl":null,"url":null,"abstract":"<div><p>Developing a multifunctional material that can detect and remove carcinogens in water environments, simultaneously monitor their toxic metabolites in living organisms is significant for environmental remediation and human health. However, most research only focused on detection or adsorption carcinogens due to the difficulty of integrating multiple functions into one material, let alone monitoring their toxic metabolites. Here, a multifunctional Tb/Eu@TATB-HOF (<strong>1</strong>) is first developed to monitor two carcinogens, malachite green (MG) and its metabolites leucomalachite green (LMG), and simultaneously remove MG from the contaminated water. <strong>1</strong>, as the dual-emission fluorescence sensor, can achieve ultrasensitive and highly visualized sensing for MG and LMG with different response modes. Even in actual samples, <strong>1</strong> still exhibits satisfactory sensing performances. As the adsorbent, <strong>1</strong> displays good recyclability and high adsorption capacity for MG. The sensing and adsorption mechanisms are explored through experiments and theoretical calculations. This work not only provides a novel insight for environmental remediation and human health through detection and removal of carcinogens, simultaneously monitoring their toxic metabolites, but first reveals the enormous potential of HOFs as multifunctional materials simultaneously for fluorescence sensing and adsorption.</p></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"474 ","pages":"Article 134742"},"PeriodicalIF":12.2000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389424013219","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing a multifunctional material that can detect and remove carcinogens in water environments, simultaneously monitor their toxic metabolites in living organisms is significant for environmental remediation and human health. However, most research only focused on detection or adsorption carcinogens due to the difficulty of integrating multiple functions into one material, let alone monitoring their toxic metabolites. Here, a multifunctional Tb/Eu@TATB-HOF (1) is first developed to monitor two carcinogens, malachite green (MG) and its metabolites leucomalachite green (LMG), and simultaneously remove MG from the contaminated water. 1, as the dual-emission fluorescence sensor, can achieve ultrasensitive and highly visualized sensing for MG and LMG with different response modes. Even in actual samples, 1 still exhibits satisfactory sensing performances. As the adsorbent, 1 displays good recyclability and high adsorption capacity for MG. The sensing and adsorption mechanisms are explored through experiments and theoretical calculations. This work not only provides a novel insight for environmental remediation and human health through detection and removal of carcinogens, simultaneously monitoring their toxic metabolites, but first reveals the enormous potential of HOFs as multifunctional materials simultaneously for fluorescence sensing and adsorption.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.