Occurrence of beta-lactamases in bacteria

IF 2.6 4区 医学 Q3 INFECTIOUS DISEASES
Veronika Zdarska, Milan Kolar, Patrik Mlynarcik
{"title":"Occurrence of beta-lactamases in bacteria","authors":"Veronika Zdarska,&nbsp;Milan Kolar,&nbsp;Patrik Mlynarcik","doi":"10.1016/j.meegid.2024.105610","DOIUrl":null,"url":null,"abstract":"<div><p>Our study highlights the escalating issue of beta-lactam resistance in nosocomial pathogens, driven by the broad spectrum of antibiotic-degrading enzymes and plasmid exchange. We catalogued known beta-lactamases across 230 bacterial genera, identified 2349 potential beta-lactamases across over 673 genera, and anticipate discovering many new types, underscoring the need for targeted gene analysis in combating resistance. This study also elucidates the complex relationship between the diversity and frequency of beta-lactamase genes across bacterial genera, highlighting the need for genus-specific approaches in combating antibiotic resistance and emphasizing these genes' significant global distribution and host-specific prevalence. We report many transcriptional regulators, transposases and other factors in the genomes of 20 different bacterial isolates, some of which are consistent with the ability of these species to adapt to different environments. Although we could not determine precisely which factors regulate the presence of beta-lactamases in specific bacteria, we found that the proportion of regulatory genes, the size of the genome, and other factors are not decisive. Further studies are needed to elucidate key aspects of this process.</p></div>","PeriodicalId":54986,"journal":{"name":"Infection Genetics and Evolution","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1567134824000613/pdfft?md5=47cd61d00cc255611725dea0a32ff7bc&pid=1-s2.0-S1567134824000613-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection Genetics and Evolution","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567134824000613","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Our study highlights the escalating issue of beta-lactam resistance in nosocomial pathogens, driven by the broad spectrum of antibiotic-degrading enzymes and plasmid exchange. We catalogued known beta-lactamases across 230 bacterial genera, identified 2349 potential beta-lactamases across over 673 genera, and anticipate discovering many new types, underscoring the need for targeted gene analysis in combating resistance. This study also elucidates the complex relationship between the diversity and frequency of beta-lactamase genes across bacterial genera, highlighting the need for genus-specific approaches in combating antibiotic resistance and emphasizing these genes' significant global distribution and host-specific prevalence. We report many transcriptional regulators, transposases and other factors in the genomes of 20 different bacterial isolates, some of which are consistent with the ability of these species to adapt to different environments. Although we could not determine precisely which factors regulate the presence of beta-lactamases in specific bacteria, we found that the proportion of regulatory genes, the size of the genome, and other factors are not decisive. Further studies are needed to elucidate key aspects of this process.

Abstract Image

细菌中的β-内酰胺酶。
我们的研究强调了在抗生素降解酶和质粒交换的广泛作用下,医院病原体对β-内酰胺类药物的耐药性问题日益严重。我们对 230 个细菌属中已知的 beta-内酰胺酶进行了编目,在超过 673 个细菌属中发现了 2349 种潜在的 beta-内酰胺酶,并预计会发现许多新的类型,这凸显了在对抗耐药性过程中进行有针对性的基因分析的必要性。这项研究还阐明了不同细菌属的β-内酰胺酶基因的多样性和频率之间的复杂关系,突出了在抗击抗生素耐药性时采用特定属方法的必要性,并强调了这些基因在全球的显著分布和宿主特异性流行。我们报告了 20 种不同细菌分离物基因组中的许多转录调节因子、转座酶和其他因子,其中一些与这些物种适应不同环境的能力相一致。虽然我们无法准确确定哪些因素会调控特定细菌中 beta-内酰胺酶的存在,但我们发现调控基因的比例、基因组的大小和其他因素并不是决定性的。要阐明这一过程的关键方面,还需要进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Infection Genetics and Evolution
Infection Genetics and Evolution 医学-传染病学
CiteScore
8.40
自引率
0.00%
发文量
215
审稿时长
82 days
期刊介绍: (aka Journal of Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases -- MEEGID) Infectious diseases constitute one of the main challenges to medical science in the coming century. The impressive development of molecular megatechnologies and of bioinformatics have greatly increased our knowledge of the evolution, transmission and pathogenicity of infectious diseases. Research has shown that host susceptibility to many infectious diseases has a genetic basis. Furthermore, much is now known on the molecular epidemiology, evolution and virulence of pathogenic agents, as well as their resistance to drugs, vaccines, and antibiotics. Equally, research on the genetics of disease vectors has greatly improved our understanding of their systematics, has increased our capacity to identify target populations for control or intervention, and has provided detailed information on the mechanisms of insecticide resistance. However, the genetics and evolutionary biology of hosts, pathogens and vectors have tended to develop as three separate fields of research. This artificial compartmentalisation is of concern due to our growing appreciation of the strong co-evolutionary interactions among hosts, pathogens and vectors. Infection, Genetics and Evolution and its companion congress [MEEGID](http://www.meegidconference.com/) (for Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases) are the main forum acting for the cross-fertilization between evolutionary science and biomedical research on infectious diseases. Infection, Genetics and Evolution is the only journal that welcomes articles dealing with the genetics and evolutionary biology of hosts, pathogens and vectors, and coevolution processes among them in relation to infection and disease manifestation. All infectious models enter the scope of the journal, including pathogens of humans, animals and plants, either parasites, fungi, bacteria, viruses or prions. The journal welcomes articles dealing with genetics, population genetics, genomics, postgenomics, gene expression, evolutionary biology, population dynamics, mathematical modeling and bioinformatics. We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信