Insights into the Complexity and Functionality of Plant Virus Protein Phosphorylation.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-08-01 Epub Date: 2024-08-13 DOI:10.1094/MPMI-04-24-0034-CR
Yuansheng Wu, Na Liu, Chengxu Zheng, Dongyuan Li, Shanshan Li, Jianguo Wu, Shanshan Zhao
{"title":"Insights into the Complexity and Functionality of Plant Virus Protein Phosphorylation.","authors":"Yuansheng Wu, Na Liu, Chengxu Zheng, Dongyuan Li, Shanshan Li, Jianguo Wu, Shanshan Zhao","doi":"10.1094/MPMI-04-24-0034-CR","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphorylation, the most extensive and pleiotropic form of protein posttranslation modification, is central to cellular signal transduction. Throughout the extensive co-evolution of plant hosts and viruses, modifications to phosphorylation have served multiple purposes. Such modifications highlight the evolutionary trajectories of viruses and their hosts, with pivotal roles in regulation and refinement of host-virus interactions. In plant hosts, protein phosphorylation orchestrates immune responses, enhancing the activities of defense-related proteins such as kinases and transcription factors, thereby strengthening pathogen resistance in plants. Moreover, phosphorylation influences the interactions between host and viral proteins, altering viral spread and replication within host plants. In the context of plant viruses, protein phosphorylation controls key aspects of the infection cycle, including viral protein functionality and the interplay between viruses and host plant cells, leading to effects on viral accumulation and dissemination within plant tissues. Explorations of the nuances of protein phosphorylation in plant hosts and their interactions with viruses are particularly important. This review provides a systematic summary of the biological roles of the proteins of plant viruses carrying diverse genomes in regulating infection and host responses through changes in the phosphorylation status. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1094/MPMI-04-24-0034-CR","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphorylation, the most extensive and pleiotropic form of protein posttranslation modification, is central to cellular signal transduction. Throughout the extensive co-evolution of plant hosts and viruses, modifications to phosphorylation have served multiple purposes. Such modifications highlight the evolutionary trajectories of viruses and their hosts, with pivotal roles in regulation and refinement of host-virus interactions. In plant hosts, protein phosphorylation orchestrates immune responses, enhancing the activities of defense-related proteins such as kinases and transcription factors, thereby strengthening pathogen resistance in plants. Moreover, phosphorylation influences the interactions between host and viral proteins, altering viral spread and replication within host plants. In the context of plant viruses, protein phosphorylation controls key aspects of the infection cycle, including viral protein functionality and the interplay between viruses and host plant cells, leading to effects on viral accumulation and dissemination within plant tissues. Explorations of the nuances of protein phosphorylation in plant hosts and their interactions with viruses are particularly important. This review provides a systematic summary of the biological roles of the proteins of plant viruses carrying diverse genomes in regulating infection and host responses through changes in the phosphorylation status. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

对植物病毒蛋白质磷酸化的复杂性和功能性的见解。
磷酸化是蛋白质翻译后修饰的最广泛、最多变的形式,是细胞信号传导的核心。在植物宿主和病毒的广泛共同进化过程中,磷酸化修饰起到了多种作用。这种修饰突显了病毒及其宿主的进化轨迹,在调节和完善宿主与病毒的相互作用方面发挥着关键作用。在植物宿主中,蛋白质磷酸化可协调免疫反应,增强激酶和转录因子等防御相关蛋白质的活性,从而增强植物对病原体的抵抗力。此外,磷酸化还会影响宿主与病毒蛋白质之间的相互作用,从而改变病毒在宿主植物体内的传播和复制。就植物病毒而言,蛋白质磷酸化控制着感染周期的关键环节,包括病毒蛋白质的功能以及病毒与宿主植物细胞之间的相互作用,从而影响病毒在植物组织内的积累和传播。探索植物宿主体内蛋白质磷酸化的细微差别及其与病毒的相互作用尤为重要。本综述系统总结了携带不同基因组的植物病毒蛋白质通过磷酸化状态的变化调节感染和宿主反应的生物学作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信