{"title":"Elasto-inertial particle focusing in sinusoidal microfluidic channels.","authors":"Dalin Chen, Qiang Huang, Zhonghua Ni, Nan Xiang","doi":"10.1002/elps.202400070","DOIUrl":null,"url":null,"abstract":"<p><p>Dean flow existing in sinusoidal channels could enhance the throughput and efficiency for elasto-inertial particle focusing. However, the fundamental mechanisms of elasto-inertial focusing in sinusoidal channels are still unclear. This work employs four microfluidic devices with symmetric and asymmetric sinusoidal channels to explore the elasto-inertial focusing mechanisms over a wide range of flow rates. The effects of rheological property, flow rate, sinusoidal channel curvature, particle size, and asymmetric geometry on particle focusing performance are investigated. It is intriguing to find that the Dean flow makes a substantial contribution to the particle elasto-inertial focusing. The results illustrate that a better particle focusing performance and a faster focusing process are obtained in the sinusoidal channel with a small curvature radius due to stronger Dean flow. In addition, the particle focusing performance is also related to particle diameter and rheological properties, the larger particles show a better focusing performance than smaller particles, and the smaller flow rate is required for particles to achieve stable focusing at the outlet in the higher concentration of polyvinylpyrrolidone solutions. Our work offers an increased knowledge of the mechanisms of elasto-inertial focusing in sinusoidal channels. Ultimately, these results provide supportive guidelines into the design and development of sinusoidal elasto-inertial microfluidic devices for high-performance focusing.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202400070","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Dean flow existing in sinusoidal channels could enhance the throughput and efficiency for elasto-inertial particle focusing. However, the fundamental mechanisms of elasto-inertial focusing in sinusoidal channels are still unclear. This work employs four microfluidic devices with symmetric and asymmetric sinusoidal channels to explore the elasto-inertial focusing mechanisms over a wide range of flow rates. The effects of rheological property, flow rate, sinusoidal channel curvature, particle size, and asymmetric geometry on particle focusing performance are investigated. It is intriguing to find that the Dean flow makes a substantial contribution to the particle elasto-inertial focusing. The results illustrate that a better particle focusing performance and a faster focusing process are obtained in the sinusoidal channel with a small curvature radius due to stronger Dean flow. In addition, the particle focusing performance is also related to particle diameter and rheological properties, the larger particles show a better focusing performance than smaller particles, and the smaller flow rate is required for particles to achieve stable focusing at the outlet in the higher concentration of polyvinylpyrrolidone solutions. Our work offers an increased knowledge of the mechanisms of elasto-inertial focusing in sinusoidal channels. Ultimately, these results provide supportive guidelines into the design and development of sinusoidal elasto-inertial microfluidic devices for high-performance focusing.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.