PVDF-HFP@Nafion-based quasisolid polymer electrolyte for high migration number in working rechargeable Na-O2 batteries.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xin He, Youxuan Ni, Wenjiao Ma, Qiu Zhang, Zhenkun Hao, Yunpeng Hou, Haixia Li, Zhenhua Yan, Kai Zhang, Jun Chen
{"title":"PVDF-HFP@Nafion-based quasisolid polymer electrolyte for high migration number in working rechargeable Na-O<sub>2</sub> batteries.","authors":"Xin He, Youxuan Ni, Wenjiao Ma, Qiu Zhang, Zhenkun Hao, Yunpeng Hou, Haixia Li, Zhenhua Yan, Kai Zhang, Jun Chen","doi":"10.1073/pnas.2320012121","DOIUrl":null,"url":null,"abstract":"<p><p>Rechargeable sodium-oxygen (Na-O<sub>2</sub>) battery is deemed as a promising high-energy storage device due to the abundant sodium resources and high theoretical energy density (1,108 Wh kg<sup>-1</sup>). A series of quasisolid electrolytes are constantly being designed to restrain the dendrites growth, the volatile and leaking risks of liquid electrolytes due to the open system of Na-O<sub>2</sub> batteries. However, the ticklish problem about low operating current density for quasisolid electrolytes still hasn't been conquered. Herein, we report a rechargeable Na-O<sub>2</sub> battery with polyvinylidene fluoride-hexafluoropropylene recombination Nafion (PVDF-HFP@Nafion) based quasisolid polymer electrolyte (QPE) and MXene-based Na anode with gradient sodiophilic structure (M-GSS/Na). QPE displays good flame resistance, locking liquid and hydrophobic properties. The introduction of Nafion can lead to a high Na<sup>+</sup> migration number (<i>t</i><sub>Na</sub><sup>+</sup> = 0.68) by blocking the motion of anion and promote the formation of NaF-rich solid electrolyte interphase, resulting in excellent cycling stability at relatively high current density under quasisolid environment. In the meantime, the M-GSS/Na anode exhibits excellent dendrite inhibition ability and cycling stability. Therefore, with the synergistic effect of QPE and M-GSS/Na, constructed Na-O<sub>2</sub> batteries run more stably and exhibit a low potential gap (0.166 V) after an initial 80 cycles at 1,000 mA g<sup>-1</sup> and 1,000 mAh g<sup>-1</sup>. This work provides the reference basis for building quasisolid state Na-O<sub>2</sub> batteries with long-term cycling stability.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2320012121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rechargeable sodium-oxygen (Na-O2) battery is deemed as a promising high-energy storage device due to the abundant sodium resources and high theoretical energy density (1,108 Wh kg-1). A series of quasisolid electrolytes are constantly being designed to restrain the dendrites growth, the volatile and leaking risks of liquid electrolytes due to the open system of Na-O2 batteries. However, the ticklish problem about low operating current density for quasisolid electrolytes still hasn't been conquered. Herein, we report a rechargeable Na-O2 battery with polyvinylidene fluoride-hexafluoropropylene recombination Nafion (PVDF-HFP@Nafion) based quasisolid polymer electrolyte (QPE) and MXene-based Na anode with gradient sodiophilic structure (M-GSS/Na). QPE displays good flame resistance, locking liquid and hydrophobic properties. The introduction of Nafion can lead to a high Na+ migration number (tNa+ = 0.68) by blocking the motion of anion and promote the formation of NaF-rich solid electrolyte interphase, resulting in excellent cycling stability at relatively high current density under quasisolid environment. In the meantime, the M-GSS/Na anode exhibits excellent dendrite inhibition ability and cycling stability. Therefore, with the synergistic effect of QPE and M-GSS/Na, constructed Na-O2 batteries run more stably and exhibit a low potential gap (0.166 V) after an initial 80 cycles at 1,000 mA g-1 and 1,000 mAh g-1. This work provides the reference basis for building quasisolid state Na-O2 batteries with long-term cycling stability.

基于 PVDF-HFP@Nafion 的准固体聚合物电解质,可在工作的可充电 Na-O2 电池中实现高迁移数量。
可充电钠氧(Na-O2)电池因其丰富的钠资源和较高的理论能量密度(1,108 Wh kg-1)而被认为是一种前景广阔的高能量存储设备。由于 Na-O2 电池的开放系统,人们不断设计出一系列固态电解质,以抑制树枝状生长、液态电解质的挥发和泄漏风险。然而,固态电解质工作电流密度低这一棘手问题仍未得到解决。在此,我们报告了一种采用聚偏二氟乙烯-六氟丙烯重组萘非离子(PVDF-HFP@Nafion)为基质的固态聚合物电解质(QPE)和具有梯度亲水结构(M-GSS/Na)的MXene基Na阳极的可充电Na-O2电池。QPE 具有良好的阻燃性、锁液性和疏水性。Nafion 的引入可通过阻断阴离子的运动而导致较高的 Na+ 迁移数(tNa+ = 0.68),并促进富含 NaF 的固体电解质间相的形成,从而在相对较高的电流密度下,在准固体环境中实现出色的循环稳定性。同时,M-GSS/Na 阳极还表现出优异的枝晶抑制能力和循环稳定性。因此,在 QPE 和 M-GSS/Na 的协同作用下,所构建的 Na-O2 电池在 1,000 mA g-1 和 1,000 mAh g-1 条件下初始循环 80 次后,运行更稳定,电位差(0.166 V)更低。这项工作为构建具有长期循环稳定性的固态 Na-O2 电池提供了参考依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信