Visualization of the Infection and Colonization Process of Dendrobium officinale Using a Green Fluorescent Protein-Tagged Isolate of Fusarium oxysporum.
Xue Guo, Rongyu Li, Yi Ding, Feixu Mo, Ke Hu, Minggui Ou, Diao Jiang, Ming Li
{"title":"Visualization of the Infection and Colonization Process of <i>Dendrobium officinale</i> Using a Green Fluorescent Protein-Tagged Isolate of <i>Fusarium oxysporum</i>.","authors":"Xue Guo, Rongyu Li, Yi Ding, Feixu Mo, Ke Hu, Minggui Ou, Diao Jiang, Ming Li","doi":"10.1094/PHYTO-12-23-0495-R","DOIUrl":null,"url":null,"abstract":"<p><p><i>Dendrobium officinale</i> soft rot is a widespread and destructive disease caused by <i>Fusarium oxysporum</i> that can seriously affect yield and quality. To better understand the fungal infection and colonization, we successfully created an <i>F. oxysporum</i> labeled with green fluorescent protein using the <i>Agrobacterium tumefaciens</i>-mediated transformation method. Transformants had varying fluorescence intensities, but their pathogenicity did not differ from that of the wild type. Fluorescence microscopy revealed that <i>F. oxysporum</i> primarily entered the aboveground portion of <i>D. officinale</i> through the leaf margin, stomata, or by direct penetration of the leaf surface. It then colonized the mesophyll and spread along its vascular bundles. <i>D. officinale</i> exhibited typical symptoms of decay and wilting at 14 days postinoculation, accompanied by a pronounced fluorescence signal in the affected area. The initial colonization of <i>F. oxysporum</i> in the subterranean region primarily involved attachment to the root hair and epidermis, which progressed to the medullary vascular bundle. At 14 days postinoculation, the root vascular bundles of <i>D. officinale</i> exhibited significant colonization by <i>F. oxysporum</i>. Macroconidia were also observed in black rot <i>D. officinale</i> tissue. In particular, the entire root was surrounded by a significant number of chlamydospore-producing <i>F. oxysporum</i> mycelia at 28 days postinoculation. This approach allowed for the visualization of the complete infection process of <i>F. oxysporum</i> and provided a theoretical foundation for the development of field control strategies.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"1791-1801"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-12-23-0495-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dendrobium officinale soft rot is a widespread and destructive disease caused by Fusarium oxysporum that can seriously affect yield and quality. To better understand the fungal infection and colonization, we successfully created an F. oxysporum labeled with green fluorescent protein using the Agrobacterium tumefaciens-mediated transformation method. Transformants had varying fluorescence intensities, but their pathogenicity did not differ from that of the wild type. Fluorescence microscopy revealed that F. oxysporum primarily entered the aboveground portion of D. officinale through the leaf margin, stomata, or by direct penetration of the leaf surface. It then colonized the mesophyll and spread along its vascular bundles. D. officinale exhibited typical symptoms of decay and wilting at 14 days postinoculation, accompanied by a pronounced fluorescence signal in the affected area. The initial colonization of F. oxysporum in the subterranean region primarily involved attachment to the root hair and epidermis, which progressed to the medullary vascular bundle. At 14 days postinoculation, the root vascular bundles of D. officinale exhibited significant colonization by F. oxysporum. Macroconidia were also observed in black rot D. officinale tissue. In particular, the entire root was surrounded by a significant number of chlamydospore-producing F. oxysporum mycelia at 28 days postinoculation. This approach allowed for the visualization of the complete infection process of F. oxysporum and provided a theoretical foundation for the development of field control strategies.
期刊介绍:
Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.