{"title":"Strategic framework for harnessing luminescent metal nanocluster assemblies in biosensing applications","authors":"Arun Mukhopadhyay, Satya Ranjan Sahoo, Sukhendu Mahata, Nirmal Goswami","doi":"10.1007/s00216-024-05353-2","DOIUrl":null,"url":null,"abstract":"<div><p>The distinctive physicochemical attributes of ultra-small metal nanoclusters (MNCs) resembling those of molecules make them versatile constituents for self-assembled frameworks. This critical review scrutinizes the influence of assembly on the photoluminescence (PL) properties of MNCs and investigates their utility in biosensing applications. The investigation is initiated with an assessment of the shift from individual MNCs to assemblies and its repercussions on PL efficacy. Subsequently, two distinct biosensing modalities are explored: assembly-driven detection mechanisms and detection predicated on structural modifications in assembled MNCs. Through meticulous examination, we underscore the potential of self-assembly methodologies in tailoring the PL behavior of MNCs for the detection of diverse biological analytes and diseases.</p></div>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":"416 17","pages":"3963 - 3974"},"PeriodicalIF":3.8000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00216-024-05353-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The distinctive physicochemical attributes of ultra-small metal nanoclusters (MNCs) resembling those of molecules make them versatile constituents for self-assembled frameworks. This critical review scrutinizes the influence of assembly on the photoluminescence (PL) properties of MNCs and investigates their utility in biosensing applications. The investigation is initiated with an assessment of the shift from individual MNCs to assemblies and its repercussions on PL efficacy. Subsequently, two distinct biosensing modalities are explored: assembly-driven detection mechanisms and detection predicated on structural modifications in assembled MNCs. Through meticulous examination, we underscore the potential of self-assembly methodologies in tailoring the PL behavior of MNCs for the detection of diverse biological analytes and diseases.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.