{"title":"Light dependent protochlorophyllide oxidoreductase: a succinct look","authors":"Pratishtha Vedalankar, Baishnab C. Tripathy","doi":"10.1007/s12298-024-01454-5","DOIUrl":null,"url":null,"abstract":"<p>Reducing protochlorophyllide (Pchlide) to chlorophyllide (Chlide) is a major regulatory step in the chlorophyll biosynthesis pathway. This reaction is catalyzed by light-dependent protochlorophyllide oxidoreductase (LPOR) in oxygenic phototrophs, particularly angiosperms. LPOR-NADPH and Pchlide form a ternary complex to be efficiently photo-transformed to synthesize Chlide and, subsequently, chlorophyll during the transition from skotomorphogenesis to photomorphogenesis. Besides lipids, carotenoids and poly-cis xanthophylls influence the formation of the photoactive LPOR complexes and the PLBs. The crystal structure of LPOR reveals evolutionarily conserved cysteine residues implicated in the Pchlide binding and catalysis around the active site. Different isoforms of LPOR viz PORA, PORB, and PORC expressed at different stages of chloroplast development play a photoprotective role by quickly transforming the photosensitive Pchlide to Chlide. Non-photo-transformed Pchlide acts as a photosensitizer to generate singlet oxygen that causes oxidative stress and cell death. Therefore, different isoforms of LPOR have evolved and differentially expressed during plant development to protect plants from photodamage and thus play a pivotal role during photomorphogenesis. This review brings out the salient features of LPOR structure, structure–function relationships, and ultra-fast photo transformation of Pchlide to Chlide by oligomeric and polymeric forms of LPOR.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-024-01454-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Reducing protochlorophyllide (Pchlide) to chlorophyllide (Chlide) is a major regulatory step in the chlorophyll biosynthesis pathway. This reaction is catalyzed by light-dependent protochlorophyllide oxidoreductase (LPOR) in oxygenic phototrophs, particularly angiosperms. LPOR-NADPH and Pchlide form a ternary complex to be efficiently photo-transformed to synthesize Chlide and, subsequently, chlorophyll during the transition from skotomorphogenesis to photomorphogenesis. Besides lipids, carotenoids and poly-cis xanthophylls influence the formation of the photoactive LPOR complexes and the PLBs. The crystal structure of LPOR reveals evolutionarily conserved cysteine residues implicated in the Pchlide binding and catalysis around the active site. Different isoforms of LPOR viz PORA, PORB, and PORC expressed at different stages of chloroplast development play a photoprotective role by quickly transforming the photosensitive Pchlide to Chlide. Non-photo-transformed Pchlide acts as a photosensitizer to generate singlet oxygen that causes oxidative stress and cell death. Therefore, different isoforms of LPOR have evolved and differentially expressed during plant development to protect plants from photodamage and thus play a pivotal role during photomorphogenesis. This review brings out the salient features of LPOR structure, structure–function relationships, and ultra-fast photo transformation of Pchlide to Chlide by oligomeric and polymeric forms of LPOR.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.