Jennifer Marsh, Marie Edmonds, Bruce Houghton, Iris Buisman, Richard Herd
{"title":"Magma mingling during the 1959 eruption of Kīlauea Iki, Hawaiʻi","authors":"Jennifer Marsh, Marie Edmonds, Bruce Houghton, Iris Buisman, Richard Herd","doi":"10.1007/s00445-024-01748-2","DOIUrl":null,"url":null,"abstract":"<p>Magma mingling and mixing are common processes at basaltic volcanoes and play a fundamental role in magma petrogenesis and eruption dynamics. Mingling occurs most commonly when hot primitive magma is introduced into cooler magma. Here, we investigate a scenario whereby cool, partially degassed lava is drained back into a conduit, where it mingles with hotter, less degassed magma. The 1959 eruption of Kīlauea Iki, Hawaiʻi involved 16 high fountaining episodes. During each episode, fountains fed a lava lake in a pit crater, which then partially drained back into the conduit during and after each episode. We infer highly crystalline tachylite inclusions and streaks in the erupted crystal-poor scoria to be the result of the recycling of this drain-back lava. The crystal phases present are dendrites of plagioclase, augite and magnetite/ilmenite, at sizes of up to 10 µm. Host sideromelane glass contains 7–8 wt% MgO and the tachylite glass (up to 0.5% by area) contains 2.5–6 wt% MgO. The vesicle population in the tachylite is depleted in the smallest size classes (< 0.5 mm) and has overall lower vesicle number densities and a higher degree of vesicle coalescence than the sideromelane component. The tachylite exhibits increasingly complex ‘stretching and folding’ mingling textures through the episodes, with discrete blocky tachylite inclusions in episodes 1 and 3 giving way to complex, folded, thin filaments of tachylite in pyroclasts erupted in episodes 15 and 16. We calculate that a lava lake crust 8–35 cm thick may have formed in the repose times between episodes, and then foundered and been entrained into the conduit during drain-back. The recycled fragments of crust would have been reheated in the conduit, inducing glass devitrification and crystallisation of pyroxene, magnetite and plagioclase dendrites and eventually undergoing ductile flow as the temperature of the fragments approached the host magma temperature. We use simple models of magma mingling to establish that stretching and folding of recycled, ductile lava could involve thinning of the clasts by up to a factor of 10 during the timescale of the eruption, consistent with observations of streaks and filaments of tachylite erupted during episodes 15 and 16, which may have undergone multiple cycles of eruption, drain-back and reheating.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"125 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Volcanology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00445-024-01748-2","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Magma mingling and mixing are common processes at basaltic volcanoes and play a fundamental role in magma petrogenesis and eruption dynamics. Mingling occurs most commonly when hot primitive magma is introduced into cooler magma. Here, we investigate a scenario whereby cool, partially degassed lava is drained back into a conduit, where it mingles with hotter, less degassed magma. The 1959 eruption of Kīlauea Iki, Hawaiʻi involved 16 high fountaining episodes. During each episode, fountains fed a lava lake in a pit crater, which then partially drained back into the conduit during and after each episode. We infer highly crystalline tachylite inclusions and streaks in the erupted crystal-poor scoria to be the result of the recycling of this drain-back lava. The crystal phases present are dendrites of plagioclase, augite and magnetite/ilmenite, at sizes of up to 10 µm. Host sideromelane glass contains 7–8 wt% MgO and the tachylite glass (up to 0.5% by area) contains 2.5–6 wt% MgO. The vesicle population in the tachylite is depleted in the smallest size classes (< 0.5 mm) and has overall lower vesicle number densities and a higher degree of vesicle coalescence than the sideromelane component. The tachylite exhibits increasingly complex ‘stretching and folding’ mingling textures through the episodes, with discrete blocky tachylite inclusions in episodes 1 and 3 giving way to complex, folded, thin filaments of tachylite in pyroclasts erupted in episodes 15 and 16. We calculate that a lava lake crust 8–35 cm thick may have formed in the repose times between episodes, and then foundered and been entrained into the conduit during drain-back. The recycled fragments of crust would have been reheated in the conduit, inducing glass devitrification and crystallisation of pyroxene, magnetite and plagioclase dendrites and eventually undergoing ductile flow as the temperature of the fragments approached the host magma temperature. We use simple models of magma mingling to establish that stretching and folding of recycled, ductile lava could involve thinning of the clasts by up to a factor of 10 during the timescale of the eruption, consistent with observations of streaks and filaments of tachylite erupted during episodes 15 and 16, which may have undergone multiple cycles of eruption, drain-back and reheating.
期刊介绍:
Bulletin of Volcanology was founded in 1922, as Bulletin Volcanologique, and is the official journal of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI). The Bulletin of Volcanology publishes papers on volcanoes, their products, their eruptive behavior, and their hazards. Papers aimed at understanding the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques are also published. Material is published in four sections: Review Articles; Research Articles; Short Scientific Communications; and a Forum that provides for discussion of controversial issues and for comment and reply on previously published Articles and Communications.