Inversion of the attenuated momenta ray transform of planar symmetric tensors

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hiroshi Fujiwara, David Omogbhe, Kamran Sadiq and Alexandru Tamasan
{"title":"Inversion of the attenuated momenta ray transform of planar symmetric tensors","authors":"Hiroshi Fujiwara, David Omogbhe, Kamran Sadiq and Alexandru Tamasan","doi":"10.1088/1361-6420/ad49cc","DOIUrl":null,"url":null,"abstract":"We present a reconstruction method that stably recovers the real valued, symmetric tensors compactly supported in the Euclidean plane, from knowledge of their attenuated momenta ray transform. The problem is recast as an inverse boundary value problem for a system of transport equations, which we solve by an extension of Bukhgeim’s A-analytic theory. The method of proof is constructive. To illustrate the reconstruction method, we present results obtained in the numerical implementation for the non-attenuated case of one-tensors.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad49cc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a reconstruction method that stably recovers the real valued, symmetric tensors compactly supported in the Euclidean plane, from knowledge of their attenuated momenta ray transform. The problem is recast as an inverse boundary value problem for a system of transport equations, which we solve by an extension of Bukhgeim’s A-analytic theory. The method of proof is constructive. To illustrate the reconstruction method, we present results obtained in the numerical implementation for the non-attenuated case of one-tensors.
平面对称张量的衰减矩射线变换反演
我们提出了一种重构方法,它可以根据衰减矩射线变换的知识,稳定地恢复欧几里得平面内紧凑支撑的实值对称张量。这个问题被重构为一个传输方程系统的反边界值问题,我们通过布赫盖姆 A-analytic 理论的扩展来解决这个问题。证明方法是构造性的。为了说明重构方法,我们介绍了一张量非衰减情况下的数值计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信