Hankel Determinants for the Logarithmic Coefficients of a Subclass of Close-to-Star Functions

IF 1.3 4区 数学 Q1 MATHEMATICS
Dong Guo, Huo Tang, Jun Zhang, Qingbing Xu, Zongtao Li
{"title":"Hankel Determinants for the Logarithmic Coefficients of a Subclass of Close-to-Star Functions","authors":"Dong Guo, Huo Tang, Jun Zhang, Qingbing Xu, Zongtao Li","doi":"10.1155/2024/1315252","DOIUrl":null,"url":null,"abstract":"Suppose that <svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 36.9885 11.5564\" width=\"36.9885pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,9.659,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,21.515,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,26.013,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.253,0)\"></path></g></svg> is a class of close-to-star functions. In this paper, we investigated the estimate of Zalcman functional on the logarithmic coefficients and the third Hankel determinant for the class <svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 36.9885 11.5564\" width=\"36.9885pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-20\"></use></g><g transform=\"matrix(.013,0,0,-0.013,9.659,0)\"><use xlink:href=\"#g198-21\"></use></g><g transform=\"matrix(.013,0,0,-0.013,21.515,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,26.013,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.253,0)\"><use xlink:href=\"#g113-42\"></use></g></svg> with the determinant entry of logarithmic coefficients. Also, we obtained the sharp bounds of Zalcman functional <svg height=\"13.639pt\" style=\"vertical-align:-4.35067pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 34.116 13.639\" width=\"34.116pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,5.031,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,9.463,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,11.619,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,16.59,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,21.088,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,29.441,0)\"><use xlink:href=\"#g113-42\"></use></g></svg> and <svg height=\"13.639pt\" style=\"vertical-align:-4.35067pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 34.116 13.639\" width=\"34.116pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-75\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,5.031,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,9.463,3.132)\"><use xlink:href=\"#g50-45\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,11.62,3.132)\"><use xlink:href=\"#g50-52\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.59,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,21.088,0)\"><use xlink:href=\"#g113-103\"></use></g><g transform=\"matrix(.013,0,0,-0.013,29.441,0)\"><use xlink:href=\"#g113-42\"></use></g></svg> for the class <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 36.9885 11.5564\" width=\"36.9885pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-20\"></use></g><g transform=\"matrix(.013,0,0,-0.013,9.659,0)\"><use xlink:href=\"#g198-21\"></use></g><g transform=\"matrix(.013,0,0,-0.013,21.515,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,26.013,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.253,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>.</span>","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"14 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/1315252","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that is a class of close-to-star functions. In this paper, we investigated the estimate of Zalcman functional on the logarithmic coefficients and the third Hankel determinant for the class with the determinant entry of logarithmic coefficients. Also, we obtained the sharp bounds of Zalcman functional and for the class .
近星函数子类对数系数的汉克尔决定因素
假设是一类近似星函数。本文研究了 Zalcman 函数对对数系数的估计和带有对数系数行列式项的类的第三汉克尔行列式。此外,我们还得到了...类的扎尔克曼函数和...类的汉克尔行列式的尖锐边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信