Diagnosis of EV Gearbox Bearing Fault Using Deep Learning-Based Signal Processing

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kicheol Jeong, Chulwoo Moon
{"title":"Diagnosis of EV Gearbox Bearing Fault Using Deep Learning-Based Signal Processing","authors":"Kicheol Jeong, Chulwoo Moon","doi":"10.1007/s12239-024-00094-8","DOIUrl":null,"url":null,"abstract":"<p>The gearbox of an electric vehicle operates under the high load torque and axial load of electric vehicles. In particular, the bearings that support the shaft of the gearbox are subjected to several tons of axial load, and as the mileage increases, fault occurs on bearing rolling elements frequently. Such bearing fault has a serious impact on driving comfort and vehicle safety, however, bearing faults are diagnosed by human experts nowadays, and algorithm-based electric vehicle bearing fault diagnosis has not been implemented. Therefore, in this paper, a deep learning-based bearing vibration signal processing method to diagnose bearing fault in electric vehicle gearboxes is proposed. The proposed method consists of a deep neural network learning stage and an application stage of the pre-trained neural network. In the deep neural network learning stage, supervised learning is carried out based on two acceleration sensors. In the neural network application stage, signal processing of a single accelerometer signal is performed through a pre-trained neural network. In conclusion, the pre-trained neural network makes bearing fault signals stand out and can utilize these signals to extract frequency characteristics of bearing fault.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00094-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The gearbox of an electric vehicle operates under the high load torque and axial load of electric vehicles. In particular, the bearings that support the shaft of the gearbox are subjected to several tons of axial load, and as the mileage increases, fault occurs on bearing rolling elements frequently. Such bearing fault has a serious impact on driving comfort and vehicle safety, however, bearing faults are diagnosed by human experts nowadays, and algorithm-based electric vehicle bearing fault diagnosis has not been implemented. Therefore, in this paper, a deep learning-based bearing vibration signal processing method to diagnose bearing fault in electric vehicle gearboxes is proposed. The proposed method consists of a deep neural network learning stage and an application stage of the pre-trained neural network. In the deep neural network learning stage, supervised learning is carried out based on two acceleration sensors. In the neural network application stage, signal processing of a single accelerometer signal is performed through a pre-trained neural network. In conclusion, the pre-trained neural network makes bearing fault signals stand out and can utilize these signals to extract frequency characteristics of bearing fault.

Abstract Image

利用基于深度学习的信号处理诊断电动汽车变速箱轴承故障
电动汽车的变速箱在电动汽车的高负载扭矩和轴向负载下工作。其中,支撑变速箱轴的轴承承受着数吨的轴向载荷,随着行驶里程的增加,轴承滚动体故障频发。此类轴承故障严重影响驾驶舒适性和车辆安全性,但目前轴承故障诊断主要由人工专家完成,基于算法的电动汽车轴承故障诊断尚未实现。因此,本文提出了一种基于深度学习的轴承振动信号处理方法来诊断电动汽车变速箱轴承故障。该方法包括深度神经网络学习阶段和预训练神经网络的应用阶段。在深度神经网络学习阶段,基于两个加速度传感器进行监督学习。在神经网络应用阶段,通过预训练神经网络对单个加速度计信号进行信号处理。总之,预训练神经网络能使轴承故障信号更加突出,并能利用这些信号提取轴承故障的频率特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信