Mohamed Gamal Gomaa, Hamdy Maamoun Abdel-Ghafar, Francesco Galiano, Francesca Russo, Alberto Figoli, El-Sayed Ali Abdel-Aal, Abdel-Hakim Taha Kandil, Bahaa Ahmed Salah
{"title":"Ultralong hydroxyapatite-based forward osmosis membrane for freshwater generation","authors":"Mohamed Gamal Gomaa, Hamdy Maamoun Abdel-Ghafar, Francesco Galiano, Francesca Russo, Alberto Figoli, El-Sayed Ali Abdel-Aal, Abdel-Hakim Taha Kandil, Bahaa Ahmed Salah","doi":"10.1007/s11705-024-2450-0","DOIUrl":null,"url":null,"abstract":"<div><p>Increasing global water shortages are accelerating the pace of membrane manufacturing, which generates many environmentally harmful solvents. Such challenges need a radical rethink of developing innovative membranes that can address freshwater production without generating environmentally harmful solvents. This work utilized the synthesized ultra-long hydroxyapatite (UHA) by the solvothermal method using the green solvent oleic acid in preparing UHA-based forward osmosis membranes. The membranes were developed using different loading ratios of graphene oxide (GO) by vacuum-assisted filtration technique. The prepared GO/UHA membranes were identified using X-ray diffraction, scanning electron microscope, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Water contact angle and pore size distribution were determined for the obtained GO/UHA membranes. The obtained hierarchical porous structure in the prepared membranes with interconnected channels results in a stable water flux with reverse salt flux. The best water flux rate of 42 ± 2 L·m<sup>−2</sup>·h<sup>−1</sup> was achieved using the 50 mg GO/UHA membrane, which is 3.3 times higher than the pristine membrane, and a reverse salt flux of 67 g·m<sup>−2</sup>·h<sup>−1</sup>. The obtained results showed a promising capability of a new generation of sustainable inorganic-based membranes that can be utilized in freshwater generation by energy-efficient techniques such as forward osmosis.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 9","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11705-024-2450-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2450-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing global water shortages are accelerating the pace of membrane manufacturing, which generates many environmentally harmful solvents. Such challenges need a radical rethink of developing innovative membranes that can address freshwater production without generating environmentally harmful solvents. This work utilized the synthesized ultra-long hydroxyapatite (UHA) by the solvothermal method using the green solvent oleic acid in preparing UHA-based forward osmosis membranes. The membranes were developed using different loading ratios of graphene oxide (GO) by vacuum-assisted filtration technique. The prepared GO/UHA membranes were identified using X-ray diffraction, scanning electron microscope, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Water contact angle and pore size distribution were determined for the obtained GO/UHA membranes. The obtained hierarchical porous structure in the prepared membranes with interconnected channels results in a stable water flux with reverse salt flux. The best water flux rate of 42 ± 2 L·m−2·h−1 was achieved using the 50 mg GO/UHA membrane, which is 3.3 times higher than the pristine membrane, and a reverse salt flux of 67 g·m−2·h−1. The obtained results showed a promising capability of a new generation of sustainable inorganic-based membranes that can be utilized in freshwater generation by energy-efficient techniques such as forward osmosis.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.