Speed limits of the laser-induced phase transition in FeRh

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
APL Materials Pub Date : 2024-05-28 DOI:10.1063/5.0206095
M. Mattern, J. Jarecki, J. A. Arregi, V. Uhlíř, M. Rössle, M. Bargheer
{"title":"Speed limits of the laser-induced phase transition in FeRh","authors":"M. Mattern, J. Jarecki, J. A. Arregi, V. Uhlíř, M. Rössle, M. Bargheer","doi":"10.1063/5.0206095","DOIUrl":null,"url":null,"abstract":"We use ultrafast x-ray diffraction and the polar time-resolved magneto-optical Kerr effect to study the laser-induced metamagnetic phase transition in two FeRh films with thicknesses below and above the optical penetration depth. In the thin film, we identify an intrinsic timescale for the light-induced nucleation of ferromagnetic (FM) domains in the antiferromagnetic material of 8ps, which is substantially longer than the time it takes for strain waves to traverse the film. For the inhomogeneously excited thicker film, only the optically excited near-surface part transforms within 8ps. For strong excitations, we observe an additional slow rise of the FM phase, which we experimentally relate to a growth of the FM phase into the depth of the layer by comparing the transient magnetization in frontside and backside excitation geometry. In the lower lying parts of the film, which are only excited via near-equilibrium heat transport, the FM phase emerges significantly slower than 8ps after heating above the transition temperature.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"19 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0206095","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We use ultrafast x-ray diffraction and the polar time-resolved magneto-optical Kerr effect to study the laser-induced metamagnetic phase transition in two FeRh films with thicknesses below and above the optical penetration depth. In the thin film, we identify an intrinsic timescale for the light-induced nucleation of ferromagnetic (FM) domains in the antiferromagnetic material of 8ps, which is substantially longer than the time it takes for strain waves to traverse the film. For the inhomogeneously excited thicker film, only the optically excited near-surface part transforms within 8ps. For strong excitations, we observe an additional slow rise of the FM phase, which we experimentally relate to a growth of the FM phase into the depth of the layer by comparing the transient magnetization in frontside and backside excitation geometry. In the lower lying parts of the film, which are only excited via near-equilibrium heat transport, the FM phase emerges significantly slower than 8ps after heating above the transition temperature.
激光诱导 FeRh 相变的速度极限
我们利用超快 X 射线衍射和极地时间分辨磁光克尔效应,研究了厚度低于和高于光学穿透深度的两层 FeRh 薄膜中激光诱导的元磁相变。在薄膜中,我们确定了反铁磁材料中铁磁(FM)畴的光诱导成核的固有时间尺度为 8ps,大大长于应变波穿过薄膜所需的时间。对于不均匀激发的较厚薄膜,只有光学激发的近表面部分会在 8ps 内发生转变。对于强激励,我们观察到调频相的额外缓慢上升,通过比较正面和背面激励几何形状下的瞬态磁化,我们在实验中将其与调频相向膜层深处的增长联系起来。在薄膜的低层部分,仅通过近平衡热传导激发,调频相在加热到转变温度以上后出现的速度明显慢于 8ps。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
APL Materials
APL Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
9.60
自引率
3.30%
发文量
199
审稿时长
2 months
期刊介绍: APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications. In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信