{"title":"Kinematic Shakedown Analysis for Strain-Hardening Plates with the C1 Nodal Natural Element Method","authors":"Shutao Zhou, Xiaohui Wang, Yatang Ju","doi":"10.1007/s10338-024-00483-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a novel numerical solution approach for the kinematic shakedown analysis of strain-hardening thin plates using the C<sup>1</sup> nodal natural element method (C<sup>1</sup> nodal NEM). Based on Koiter’s theorem and the von Mises and two-surface yield criteria, a nonlinear mathematical programming formulation is constructed for the kinematic shakedown analysis of strain-hardening thin plates, and the C<sup>1</sup> nodal NEM is adopted for discretization. Additionally, König’s theory is used to deal with time integration by treating the generalized plastic strain increment at each load vertex. A direct iterative method is developed to linearize and solve this formulation by modifying the relevant objective function and equality constraints at each iteration. Kinematic shakedown load factors are directly calculated in a monotonically converging manner. Numerical examples validate the accuracy and convergence of the developed method and illustrate the influences of limited and unlimited strain-hardening models on the kinematic shakedown load factors of thin square and circular plates.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 5","pages":"786 - 797"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00483-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a novel numerical solution approach for the kinematic shakedown analysis of strain-hardening thin plates using the C1 nodal natural element method (C1 nodal NEM). Based on Koiter’s theorem and the von Mises and two-surface yield criteria, a nonlinear mathematical programming formulation is constructed for the kinematic shakedown analysis of strain-hardening thin plates, and the C1 nodal NEM is adopted for discretization. Additionally, König’s theory is used to deal with time integration by treating the generalized plastic strain increment at each load vertex. A direct iterative method is developed to linearize and solve this formulation by modifying the relevant objective function and equality constraints at each iteration. Kinematic shakedown load factors are directly calculated in a monotonically converging manner. Numerical examples validate the accuracy and convergence of the developed method and illustrate the influences of limited and unlimited strain-hardening models on the kinematic shakedown load factors of thin square and circular plates.
期刊介绍:
Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics.
The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables