{"title":"Advances in information processing and biological imaging using flat optics","authors":"Xinwei Wang, Huijie Hao, Xiaoyuan He, Peng Xie, Jian Liu, Jiubin Tan, Haoyu Li, Hao Wang, Patrice Genevet, Yu Luo, Xumin Ding, Guangwei Hu","doi":"10.1038/s44287-024-00057-2","DOIUrl":null,"url":null,"abstract":"Flat optical components (metasurfaces) made from artificial electromagnetic materials (metamaterials) have opened new possibilities for the manipulation of electromagnetic waves within compact multifunctional devices. This field encompasses the development of individual optical elements and their integration into systems for use in real-world applications, especially in optical information processing, light detection and ranging (LiDAR), augmented or virtual reality, and biological imaging. This comprehensive Review highlights advances in the use of flat optics in analog computational information processing and imaging applications and emphasizes their fundamental role in transfer function engineering. The natural synergy between flat optics and computational technologies is described in relation to advanced imaging and microscopy solutions that have the potential for simultaneous information acquisition and processing. An outlook on future developments, including critical insights for both newcomers and experts in this field, is also provided. Flat optics enable light manipulation at the subwavelength scale and provide a compact, wave-based, information processing and acquisition platform. Here, Wang et al. focus on the emerging interdisciplinary field of computational flat optic imaging applications and reveal their intrinsic connections.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 6","pages":"391-411"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44287-024-00057-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Flat optical components (metasurfaces) made from artificial electromagnetic materials (metamaterials) have opened new possibilities for the manipulation of electromagnetic waves within compact multifunctional devices. This field encompasses the development of individual optical elements and their integration into systems for use in real-world applications, especially in optical information processing, light detection and ranging (LiDAR), augmented or virtual reality, and biological imaging. This comprehensive Review highlights advances in the use of flat optics in analog computational information processing and imaging applications and emphasizes their fundamental role in transfer function engineering. The natural synergy between flat optics and computational technologies is described in relation to advanced imaging and microscopy solutions that have the potential for simultaneous information acquisition and processing. An outlook on future developments, including critical insights for both newcomers and experts in this field, is also provided. Flat optics enable light manipulation at the subwavelength scale and provide a compact, wave-based, information processing and acquisition platform. Here, Wang et al. focus on the emerging interdisciplinary field of computational flat optic imaging applications and reveal their intrinsic connections.