Reducing the James–Stein Shrinkage Estimator for Automatically Grouping Heterogeneous Production Batches

IF 0.4 Q4 ENGINEERING, MECHANICAL
F. G. Akhmatshin, I. A. Petrova, L. A. Kazakovtsev, I. N. Kravchenko
{"title":"Reducing the James–Stein Shrinkage Estimator for Automatically Grouping Heterogeneous Production Batches","authors":"F. G. Akhmatshin,&nbsp;I. A. Petrova,&nbsp;L. A. Kazakovtsev,&nbsp;I. N. Kravchenko","doi":"10.1134/S1052618824700043","DOIUrl":null,"url":null,"abstract":"<p>A reduction in the James–Stein shrinkage estimator might significantly increase the accuracy of cluster analysis of <i>k</i>-means for a relatively broad range of data. The efficiency of using the James–Stein shrinkage estimator for automatically grouping industrial products in homogeneous production batches is considered. Tests are conducted for batches of integrated circuits by comparing the shrinkage results with those obtained using the traditional <i>k-</i>means algorithm. The dataset is normalized according to the values of the acceptable drift, acceptable parameters, and standard deviation. As established using the Rand index, clustering is far more accurate in the automatic grouping of industrial products in homogeneous production batches, when average values of inconclusive parameters drop to zero. It is established that the reduction of the James–Stein shrinkage estimator decreases the influence of inconclusive parameters of standard data to acceptable values.</p>","PeriodicalId":642,"journal":{"name":"Journal of Machinery Manufacture and Reliability","volume":"53 3","pages":"254 - 262"},"PeriodicalIF":0.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machinery Manufacture and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1052618824700043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A reduction in the James–Stein shrinkage estimator might significantly increase the accuracy of cluster analysis of k-means for a relatively broad range of data. The efficiency of using the James–Stein shrinkage estimator for automatically grouping industrial products in homogeneous production batches is considered. Tests are conducted for batches of integrated circuits by comparing the shrinkage results with those obtained using the traditional k-means algorithm. The dataset is normalized according to the values of the acceptable drift, acceptable parameters, and standard deviation. As established using the Rand index, clustering is far more accurate in the automatic grouping of industrial products in homogeneous production batches, when average values of inconclusive parameters drop to zero. It is established that the reduction of the James–Stein shrinkage estimator decreases the influence of inconclusive parameters of standard data to acceptable values.

Abstract Image

Abstract Image

减少詹姆斯-斯泰因收缩率估算器,自动分组异质生产批次
摘要 对詹姆斯-斯坦收缩估计器进行缩减可能会显著提高 k-means 聚类分析的准确性,适用于范围相对较广的数据。本文考虑了使用詹姆斯-斯坦收缩率估计器对同质生产批次中的工业产品进行自动分组的效率问题。通过比较收缩结果和使用传统 k-means 算法获得的结果,对集成电路批次进行了测试。数据集根据可接受漂移、可接受参数和标准偏差的值进行归一化处理。正如使用兰德指数所确定的那样,当不确定参数的平均值降为零时,聚类在对同质生产批次的工业产品进行自动分组时要准确得多。詹姆斯-斯坦缩减估计器的缩减可将标准数据中不确定参数的影响降至可接受值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
33.30%
发文量
61
期刊介绍: Journal of Machinery Manufacture and Reliability  is devoted to advances in machine design; CAD/CAM; experimental mechanics of machines, machine life expectancy, and reliability studies; machine dynamics and kinematics; vibration, acoustics, and stress/strain; wear resistance engineering; real-time machine operation diagnostics; robotic systems; new materials and manufacturing processes, and other topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信