Proton-conducting hydrogel electrolytes with tight contact to binder-free MXene electrodes for high-performance thermally chargeable supercapacitor

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2024-05-28 DOI:10.1002/cey2.562
Zhijian Du, La Li, Guozhen Shen
{"title":"Proton-conducting hydrogel electrolytes with tight contact to binder-free MXene electrodes for high-performance thermally chargeable supercapacitor","authors":"Zhijian Du, La Li, Guozhen Shen","doi":"10.1002/cey2.562","DOIUrl":null,"url":null,"abstract":"Thermally chargeable supercapacitors (TCSCs) have offered exceptional energy-converting efficiency for absorbing human epidermal heat and generating and storing electrical energy, which then realize continuous power supply to electronic devices, such as sensors and wearable electronic products, in a wide range of practical significance. Here, we proposed a flexible TCSC by attaching binder-free Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene@PPy electrodes on both ends of the H<sub>3</sub>PO<sub>4</sub>@P(AM-co-AA-co-AYP K<sup>+</sup>) hydrogel electrolyte, which exhibits a large thermal power of 35.2 mV K<sup>−1</sup> at 50% relative humidity and maximum figure of merit of 2.1. The high performances of the fabricated devices can be attributed to the tunable electrical, thermodynamic, thermoelectric, and mechanical properties of the hydrogel electrolyte by adjusting the acid content and the proportion of zwitterionic compound AYP K<sup>+</sup> in the hydrogel, and the high photothermal conversion efficiency and electrochemical performance of the electrodes. Moreover, the stable and outstanding thermofvoltage output (∼200 mV) under different time scenarios of the TCSC makes it possible to drive a strain sensor, accomplishing the objectives of a human activity monitor.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"43 1","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cey2.562","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thermally chargeable supercapacitors (TCSCs) have offered exceptional energy-converting efficiency for absorbing human epidermal heat and generating and storing electrical energy, which then realize continuous power supply to electronic devices, such as sensors and wearable electronic products, in a wide range of practical significance. Here, we proposed a flexible TCSC by attaching binder-free Ti3C2Tx MXene@PPy electrodes on both ends of the H3PO4@P(AM-co-AA-co-AYP K+) hydrogel electrolyte, which exhibits a large thermal power of 35.2 mV K−1 at 50% relative humidity and maximum figure of merit of 2.1. The high performances of the fabricated devices can be attributed to the tunable electrical, thermodynamic, thermoelectric, and mechanical properties of the hydrogel electrolyte by adjusting the acid content and the proportion of zwitterionic compound AYP K+ in the hydrogel, and the high photothermal conversion efficiency and electrochemical performance of the electrodes. Moreover, the stable and outstanding thermofvoltage output (∼200 mV) under different time scenarios of the TCSC makes it possible to drive a strain sensor, accomplishing the objectives of a human activity monitor.

Abstract Image

质子传导水凝胶电解质与无粘结剂 MXene 电极紧密接触,用于高性能热充电超级电容器
热可充电超级电容器(TCSCs)具有优异的能量转换效率,可吸收人体表皮热量并产生和储存电能,进而实现对传感器和可穿戴电子产品等电子设备的持续供电,具有广泛的现实意义。在此,我们提出了一种柔性 TCSC,在 H3PO4@P(AM-co-AA-co-AYP K+)水凝胶电解质的两端附着无粘结剂的 Ti3C2Tx MXene@PPy 电极,在相对湿度为 50%的条件下,热功率可达 35.2 mV K-1,最大优点系数为 2.1。所制备器件的高性能得益于通过调节水凝胶中酸的含量和齐聚物 AYP K+ 的比例,水凝胶电解质的电学、热力学、热电学和力学性能均可调,电极的光热转换效率和电化学性能均很高。此外,TCSC 在不同时间情景下稳定而出色的热电压输出(∼200 mV)使其能够驱动应变传感器,从而实现人体活动监测器的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信