Electron–Phonon Coupling in Copper-Substituted Lead Phosphate Apatite

IF 1.1 3区 物理与天体物理 Q4 PHYSICS, APPLIED
Alexander C. Tyner, Sinéad M. Griffin, Alexander V. Balatsky
{"title":"Electron–Phonon Coupling in Copper-Substituted Lead Phosphate Apatite","authors":"Alexander C. Tyner,&nbsp;Sinéad M. Griffin,&nbsp;Alexander V. Balatsky","doi":"10.1007/s10909-024-03158-2","DOIUrl":null,"url":null,"abstract":"<div><p>Recent reports of room-temperature, ambient pressure superconductivity in copper-substituted lead phosphate apatite, commonly referred to as LK99, have prompted numerous theoretical and experimental studies into its properties. As the electron–phonon interaction is a common mechanism for superconductivity, the electron–phonon coupling strength is an important quantity to compute for LK99. In this work, we compare the electron–phonon coupling strength among the proposed compositions of LK99. The results of our study are in alignment with the conclusion that LK99 is a candidate for low-temperature, not room-temperature, superconductivity if electron–phonon interaction is to serve as the mechanism.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"216 3-4","pages":"586 - 592"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-024-03158-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03158-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Recent reports of room-temperature, ambient pressure superconductivity in copper-substituted lead phosphate apatite, commonly referred to as LK99, have prompted numerous theoretical and experimental studies into its properties. As the electron–phonon interaction is a common mechanism for superconductivity, the electron–phonon coupling strength is an important quantity to compute for LK99. In this work, we compare the electron–phonon coupling strength among the proposed compositions of LK99. The results of our study are in alignment with the conclusion that LK99 is a candidate for low-temperature, not room-temperature, superconductivity if electron–phonon interaction is to serve as the mechanism.

Abstract Image

铜取代磷酸盐铅磷灰石中的电子-鹭鸶耦合
最近关于铜代磷酸铅磷灰石(通常称为 LK99)的室温常压超导现象的报道,促使人们对其特性进行了大量的理论和实验研究。由于电子-声子相互作用是超导的常见机制,因此电子-声子耦合强度是计算 LK99 的一个重要量。在这项研究中,我们比较了 LK99 不同成分的电子-声子耦合强度。我们的研究结果与以下结论一致:如果电子-声子相互作用是低温超导的机制,那么 LK99 是低温超导的候选者,而不是室温超导的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Low Temperature Physics
Journal of Low Temperature Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
25.00%
发文量
245
审稿时长
1 months
期刊介绍: The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信