Shufeng Li, Ruxin Gu, Ru Luo, Xinyao Cheng, Xuelin Li
{"title":"Enhanced properties of Nafion nanofibrous proton exchange membranes by altering the electrospinning solvents","authors":"Shufeng Li, Ruxin Gu, Ru Luo, Xinyao Cheng, Xuelin Li","doi":"10.1515/polyeng-2024-0022","DOIUrl":null,"url":null,"abstract":"Nanofibrous proton exchange membranes (PEMs) play an important role in improving the performance of the fuel cells. In this paper, two kinds of Nafion nanofibrous PEMs, Nafion-E/W and Nafion-DMF, were fabricated respectively by using ethanol/water (E/W) and <jats:italic>N, N</jats:italic>-dimethylformamide (DMF) as the solvent and their properties, such as the morphologies, water uptake, area swelling, ion exchange capabilities, conductivities, and mechanical properties were examined. Nafion-E/W nanofibers showed a thick diameter of 6,089 nm and Nafion-DMF nanofibers a thin diameter of 410 nm. Then the two Nafion nanofibers were annealed to provide the PEMs. Compared with Nafion 117 membranes and Nafion-DMF PEMs, Nafion-E/W PEMs showed the greatest water uptake and area swelling of respectively 59.75 % and 30.31 % and the conductivity increased to 0.1405 S/cm, more than twice as much as Nafion 117 membranes, but the broken stress decreased to 5.49 MPa, nearly half of Nafion 117 membranes. Nafion-DMF PEMs showed the lowest water uptake, area swelling, and conductivity of 22.67 %, 10.75 %, and 0.0410 S/cm, and the broken stress reached 14.20 MPa, greater than 11.0 MPa of Nafion 117 membranes. The obtained experimental results are instructive to improve the properties of Nafion PEMs.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":"40 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2024-0022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Nanofibrous proton exchange membranes (PEMs) play an important role in improving the performance of the fuel cells. In this paper, two kinds of Nafion nanofibrous PEMs, Nafion-E/W and Nafion-DMF, were fabricated respectively by using ethanol/water (E/W) and N, N-dimethylformamide (DMF) as the solvent and their properties, such as the morphologies, water uptake, area swelling, ion exchange capabilities, conductivities, and mechanical properties were examined. Nafion-E/W nanofibers showed a thick diameter of 6,089 nm and Nafion-DMF nanofibers a thin diameter of 410 nm. Then the two Nafion nanofibers were annealed to provide the PEMs. Compared with Nafion 117 membranes and Nafion-DMF PEMs, Nafion-E/W PEMs showed the greatest water uptake and area swelling of respectively 59.75 % and 30.31 % and the conductivity increased to 0.1405 S/cm, more than twice as much as Nafion 117 membranes, but the broken stress decreased to 5.49 MPa, nearly half of Nafion 117 membranes. Nafion-DMF PEMs showed the lowest water uptake, area swelling, and conductivity of 22.67 %, 10.75 %, and 0.0410 S/cm, and the broken stress reached 14.20 MPa, greater than 11.0 MPa of Nafion 117 membranes. The obtained experimental results are instructive to improve the properties of Nafion PEMs.
期刊介绍:
Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.