Harvey Cao, Dimitris G Angelakis and Daniel Leykam
{"title":"Unsupervised learning of quantum many-body scars using intrinsic dimension","authors":"Harvey Cao, Dimitris G Angelakis and Daniel Leykam","doi":"10.1088/2632-2153/ad4d3f","DOIUrl":null,"url":null,"abstract":"Quantum many-body scarred systems contain both thermal and non-thermal scar eigenstates in their spectra. When these systems are quenched from special initial states which share high overlap with scar eigenstates, the system undergoes dynamics with atypically slow relaxation and periodic revival. This scarring phenomenon poses a potential avenue for circumventing decoherence in various quantum engineering applications. Given access to an unknown scar system, current approaches for identification of special states leading to non-thermal dynamics rely on costly measures such as entanglement entropy. In this work, we show how two dimensionality reduction techniques, multidimensional scaling and intrinsic dimension estimation, can be used to learn structural properties of dynamics in the PXP model and distinguish between thermal and scar initial states. The latter method is shown to be robust against limited sample sizes and experimental measurement errors.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"24 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad4d3f","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum many-body scarred systems contain both thermal and non-thermal scar eigenstates in their spectra. When these systems are quenched from special initial states which share high overlap with scar eigenstates, the system undergoes dynamics with atypically slow relaxation and periodic revival. This scarring phenomenon poses a potential avenue for circumventing decoherence in various quantum engineering applications. Given access to an unknown scar system, current approaches for identification of special states leading to non-thermal dynamics rely on costly measures such as entanglement entropy. In this work, we show how two dimensionality reduction techniques, multidimensional scaling and intrinsic dimension estimation, can be used to learn structural properties of dynamics in the PXP model and distinguish between thermal and scar initial states. The latter method is shown to be robust against limited sample sizes and experimental measurement errors.
期刊介绍:
Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.