Federico Luigi Dipasquale, Vincent Millot, Adriano Pisante
{"title":"Torus-like solutions for the Landau-de Gennes model. Part III: torus vs split minimizers","authors":"Federico Luigi Dipasquale, Vincent Millot, Adriano Pisante","doi":"10.1007/s00526-024-02743-3","DOIUrl":null,"url":null,"abstract":"<p>We study the behaviour of global minimizers of a continuum Landau–de Gennes energy functional for nematic liquid crystals, in three-dimensional axially symmetric domains diffeomorphic to a ball (a nematic droplet) and in a restricted class of <span>\\(\\mathbb {S}^1\\)</span>-equivariant configurations. It is known from our previous paper (Dipasquale et al. in J Funct Anal 286:110314, 2024) that, assuming smooth and uniaxial (e.g. homeotropic) boundary conditions and a physically relevant norm constraint in the interior (Lyuksyutov constraint), minimizing configurations are either of <i>torus</i> or of <i>split</i> type. Here, starting from a nematic droplet with the homeotropic boundary condition, we show how singular (split) solutions or smooth (torus) solutions (or even both) for the Euler–Lagrange equations do appear as energy minimizers by suitably deforming either the domain or the boundary data. As a consequence, we derive symmetry breaking results for the minimization among all competitors.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02743-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the behaviour of global minimizers of a continuum Landau–de Gennes energy functional for nematic liquid crystals, in three-dimensional axially symmetric domains diffeomorphic to a ball (a nematic droplet) and in a restricted class of \(\mathbb {S}^1\)-equivariant configurations. It is known from our previous paper (Dipasquale et al. in J Funct Anal 286:110314, 2024) that, assuming smooth and uniaxial (e.g. homeotropic) boundary conditions and a physically relevant norm constraint in the interior (Lyuksyutov constraint), minimizing configurations are either of torus or of split type. Here, starting from a nematic droplet with the homeotropic boundary condition, we show how singular (split) solutions or smooth (torus) solutions (or even both) for the Euler–Lagrange equations do appear as energy minimizers by suitably deforming either the domain or the boundary data. As a consequence, we derive symmetry breaking results for the minimization among all competitors.