Torus-like solutions for the Landau-de Gennes model. Part III: torus vs split minimizers

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Federico Luigi Dipasquale, Vincent Millot, Adriano Pisante
{"title":"Torus-like solutions for the Landau-de Gennes model. Part III: torus vs split minimizers","authors":"Federico Luigi Dipasquale, Vincent Millot, Adriano Pisante","doi":"10.1007/s00526-024-02743-3","DOIUrl":null,"url":null,"abstract":"<p>We study the behaviour of global minimizers of a continuum Landau–de Gennes energy functional for nematic liquid crystals, in three-dimensional axially symmetric domains diffeomorphic to a ball (a nematic droplet) and in a restricted class of <span>\\(\\mathbb {S}^1\\)</span>-equivariant configurations. It is known from our previous paper (Dipasquale et al. in J Funct Anal 286:110314, 2024) that, assuming smooth and uniaxial (e.g. homeotropic) boundary conditions and a physically relevant norm constraint in the interior (Lyuksyutov constraint), minimizing configurations are either of <i>torus</i> or of <i>split</i> type. Here, starting from a nematic droplet with the homeotropic boundary condition, we show how singular (split) solutions or smooth (torus) solutions (or even both) for the Euler–Lagrange equations do appear as energy minimizers by suitably deforming either the domain or the boundary data. As a consequence, we derive symmetry breaking results for the minimization among all competitors.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02743-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the behaviour of global minimizers of a continuum Landau–de Gennes energy functional for nematic liquid crystals, in three-dimensional axially symmetric domains diffeomorphic to a ball (a nematic droplet) and in a restricted class of \(\mathbb {S}^1\)-equivariant configurations. It is known from our previous paper (Dipasquale et al. in J Funct Anal 286:110314, 2024) that, assuming smooth and uniaxial (e.g. homeotropic) boundary conditions and a physically relevant norm constraint in the interior (Lyuksyutov constraint), minimizing configurations are either of torus or of split type. Here, starting from a nematic droplet with the homeotropic boundary condition, we show how singular (split) solutions or smooth (torus) solutions (or even both) for the Euler–Lagrange equations do appear as energy minimizers by suitably deforming either the domain or the boundary data. As a consequence, we derive symmetry breaking results for the minimization among all competitors.

Landau-de Gennes 模型的环状解。第三部分:环状解与分裂最小解
我们研究了向列液晶的连续朗道-德-盖尼斯能量函数的全局最小值在与球(向列液滴)差形的三维轴对称域中、以及在一类受限制的 \(\mathbb {S}^1\) -后向构型中的行为。从我们之前的论文(Dipasquale et al. in J Funct Anal 286:110314, 2024)中可以得知,假设有光滑和单轴(例如各向同性)的边界条件以及内部的物理相关规范约束(柳克秀托夫约束),最小化构型要么是环状的,要么是分裂型的。在这里,我们从具有各向同性边界条件的向列液滴出发,展示了如何通过对域或边界数据进行适当变形,使欧拉-拉格朗日方程的奇异(分裂)解或光滑(环状)解(或甚至两者兼而有之)成为能量最小化配置。因此,我们推导出了所有竞争者最小化的对称性破缺结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信