Formal model theory and higher topology

IF 0.4 4区 数学 Q4 LOGIC
Ivan Di Liberti
{"title":"Formal model theory and higher topology","authors":"Ivan Di Liberti","doi":"10.1002/malq.202300006","DOIUrl":null,"url":null,"abstract":"<p>We study the 2-categories BIon, of (generalized) bounded ionads, and <span></span><math>\n <semantics>\n <msub>\n <mtext>Acc</mtext>\n <mi>ω</mi>\n </msub>\n <annotation>$\\text{Acc}_\\omega$</annotation>\n </semantics></math>, of accessible categories with directed colimits, as an abstract framework to approach formal model theory. We relate them to topoi and (lex) geometric sketches, which serve as categorical specifications of geometric theories. We provide reconstruction and completeness-like results. We relate abstract elementary classes to locally decidable topoi. We introduce the notion of categories of saturated objects and relate it to atomic topoi.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 1","pages":"111-125"},"PeriodicalIF":0.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300006","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We study the 2-categories BIon, of (generalized) bounded ionads, and Acc ω $\text{Acc}_\omega$ , of accessible categories with directed colimits, as an abstract framework to approach formal model theory. We relate them to topoi and (lex) geometric sketches, which serve as categorical specifications of geometric theories. We provide reconstruction and completeness-like results. We relate abstract elementary classes to locally decidable topoi. We introduce the notion of categories of saturated objects and relate it to atomic topoi.

Abstract Image

形式模型论和高级拓扑学
我们研究了(广义的)有界离子的二元范畴 BIon 和有向列限的可访问范畴 , 作为接近形式模型理论的抽象框架。我们把它们与作为几何理论分类规范的popoi 和(lex)几何草图联系起来。我们提供了类似重构和完备性的结果。我们将抽象基本类与局部可解拓扑联系起来。我们引入了饱和对象范畴的概念,并将其与原子拓扑联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信