Rouholah Hoseini Naveh, Mohammed Golshani, Esfandiar Eslami
{"title":"Adding highly generic subsets of \n \n \n ω\n 2\n \n $\\omega _2$","authors":"Rouholah Hoseini Naveh, Mohammed Golshani, Esfandiar Eslami","doi":"10.1002/malq.202300007","DOIUrl":null,"url":null,"abstract":"<p>Starting from the generalized continuum hypothesis (<span></span><math>\n <semantics>\n <mi>GCH</mi>\n <annotation>$\\mathsf {GCH}$</annotation>\n </semantics></math>), we build a cardinal and <span></span><math>\n <semantics>\n <mi>GCH</mi>\n <annotation>$\\mathsf {GCH}$</annotation>\n </semantics></math> preserving generic extension of the universe, in which there exists a set <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>⊆</mo>\n <msub>\n <mi>ω</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$A \\subseteq \\omega _2$</annotation>\n </semantics></math> of size <span></span><math>\n <semantics>\n <msub>\n <mi>ℵ</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\aleph _2$</annotation>\n </semantics></math> so that every countably infinite subset of <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ω</mi>\n <mn>2</mn>\n </msub>\n <mo>∖</mo>\n <mi>A</mi>\n </mrow>\n <annotation>$\\omega _2 \\setminus A$</annotation>\n </semantics></math> is Cohen generic over the ground model.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Starting from the generalized continuum hypothesis (), we build a cardinal and preserving generic extension of the universe, in which there exists a set of size so that every countably infinite subset of or is Cohen generic over the ground model.