Fourier-Poisson Transforms Associated with the Principal Series Representations of Sp(1, n)

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xingya Fan, Jianxun He, Xiaoke Jia
{"title":"Fourier-Poisson Transforms Associated with the Principal Series Representations of Sp(1, n)","authors":"Xingya Fan,&nbsp;Jianxun He,&nbsp;Xiaoke Jia","doi":"10.1007/s00006-024-01330-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(X=Sp(1,n)/Sp(n)\\)</span> be the quaternion hyperbolic space with a left invariant Haar measure, unique up to scalars, where <i>n</i> is greater than or equal to 1. The Fürstenberg boundary of <i>X</i> is denoted as <span>\\(\\Sigma \\)</span>. In this paper, we focus on the Plancherel formula on <i>X</i> associated with the Poisson transform of vector-valued <span>\\(L^2\\)</span>-space on <span>\\(\\Sigma \\)</span>. Through the Fourier-Jacobi transform and the Fourier-Poisson transform, we derive the Plancherel decomposition of the unitary representation of <i>Sp</i>(1, <i>n</i>) on <span>\\(L^2(X)\\)</span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01330-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(X=Sp(1,n)/Sp(n)\) be the quaternion hyperbolic space with a left invariant Haar measure, unique up to scalars, where n is greater than or equal to 1. The Fürstenberg boundary of X is denoted as \(\Sigma \). In this paper, we focus on the Plancherel formula on X associated with the Poisson transform of vector-valued \(L^2\)-space on \(\Sigma \). Through the Fourier-Jacobi transform and the Fourier-Poisson transform, we derive the Plancherel decomposition of the unitary representation of Sp(1, n) on \(L^2(X)\).

与 Sp(1, n) 主数列表示相关的傅立叶-泊松变换
让(X=Sp(1,n)/Sp(n)\)是具有左不变哈量的四元双曲空间,对标量是唯一的,其中 n 大于或等于 1,X 的 Fürstenberg 边界表示为(\Sigma \)。在本文中,我们将重点研究与 \(\Sigma\) 上的矢量值 \(L^2\)-space 的泊松变换相关的 X 上的 Plancherel 公式。通过傅里叶-雅可比变换和傅里叶-泊松变换,我们得出了 Sp(1, n) 在 \(L^2(X)\) 上的单元表示的 Plancherel 分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信