{"title":"Semi-Supervised Predictive Clustering Trees for (Hierarchical) Multi-Label Classification","authors":"Jurica Levatić, Michelangelo Ceci, Dragi Kocev, Sašo Džeroski","doi":"10.1155/2024/5610291","DOIUrl":null,"url":null,"abstract":"<p>Semi-supervised learning (SSL) is a common approach to learning predictive models using not only labeled, but also unlabeled examples. While SSL for the simple tasks of classification and regression has received much attention from the research community, this is not the case for complex prediction tasks with structurally dependent variables, such as multi-label classification and hierarchical multi-label classification. These tasks may require additional information, possibly coming from the underlying distribution in the descriptive space provided by unlabeled examples, to better face the challenging task of simultaneously predicting multiple class labels. In this paper, we investigate this aspect and propose a (hierarchical) multi-label classification method based on semi-supervised learning of predictive clustering trees, which we also extend towards ensemble learning. Extensive experimental evaluation conducted on 24 datasets shows significant advantages of the proposed method and its extension with respect to their supervised counterparts. Moreover, the method preserves interpretability of classical tree-based models.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5610291","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Semi-supervised learning (SSL) is a common approach to learning predictive models using not only labeled, but also unlabeled examples. While SSL for the simple tasks of classification and regression has received much attention from the research community, this is not the case for complex prediction tasks with structurally dependent variables, such as multi-label classification and hierarchical multi-label classification. These tasks may require additional information, possibly coming from the underlying distribution in the descriptive space provided by unlabeled examples, to better face the challenging task of simultaneously predicting multiple class labels. In this paper, we investigate this aspect and propose a (hierarchical) multi-label classification method based on semi-supervised learning of predictive clustering trees, which we also extend towards ensemble learning. Extensive experimental evaluation conducted on 24 datasets shows significant advantages of the proposed method and its extension with respect to their supervised counterparts. Moreover, the method preserves interpretability of classical tree-based models.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.