The Significance of Cable and Nonlinear Loads to Losses, Voltage Drop, and Harmonics in Remote Off-Grid Systems

IF 0.9 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Ilman Sulaeman Islahuzzaman;Muhammad Imam Sudrajat;Niek Moonen;Jelena Popovic;Frank Leferink
{"title":"The Significance of Cable and Nonlinear Loads to Losses, Voltage Drop, and Harmonics in Remote Off-Grid Systems","authors":"Ilman Sulaeman Islahuzzaman;Muhammad Imam Sudrajat;Niek Moonen;Jelena Popovic;Frank Leferink","doi":"10.1109/LEMCPA.2024.3387935","DOIUrl":null,"url":null,"abstract":"Powerquality (PQ) is part of low-frequency electromagnetic interference (EMI), which could be present in any system. It is known that nonlinear loads pose PQ problems in large grids, but this problem is even more prevalent in smaller grids. However, the typical methods in addressing PQ problems might not be feasible in remote areas because of their challenging characteristics; hence, alternative approaches are needed. This letter investigates the significance of the cable characteristics and the nonlinear load current amplitude \n<inline-formula> <tex-math>$(I_{\\mathrm { load}})$ </tex-math></inline-formula>\n on the power losses \n<inline-formula> <tex-math>$(P_{\\mathrm { loss}})$ </tex-math></inline-formula>\n, voltage drop \n<inline-formula> <tex-math>$(V_{\\mathrm { drop}})$ </tex-math></inline-formula>\n, and total voltage harmonic distortions (THD\n<inline-formula> <tex-math>$_{V}$ </tex-math></inline-formula>\n) to effectively minimize them. The investigated cable parameters were based on the typical cable \n<inline-formula> <tex-math>$2\\times 16$ </tex-math></inline-formula>\n mm2 NFA2X. A high value of \n<inline-formula> <tex-math>$P_{\\mathrm { loss}}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$V_{\\mathrm { drop}}$ </tex-math></inline-formula>\n, and THD\n<inline-formula> <tex-math>$_{V}$ </tex-math></inline-formula>\n was found when the loads were highly nonlinear and the cable length was 1 km. A sensitivity showed that \n<inline-formula> <tex-math>$R_{\\mathrm { cable}}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$I_{\\mathrm { load}}$ </tex-math></inline-formula>\n were more significant than \n<inline-formula> <tex-math>$L_{\\mathrm { cable}}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$C_{\\mathrm { cable}}$ </tex-math></inline-formula>\n to the increase of \n<inline-formula> <tex-math>$P_{\\mathrm { loss}}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$V_{\\mathrm { drop}}$ </tex-math></inline-formula>\n, and THD\n<inline-formula> <tex-math>$_{V}$ </tex-math></inline-formula>\n. Therefore, using more parallel conductors (\n<inline-formula> <tex-math>$4\\times 16$ </tex-math></inline-formula>\n mm2 NFA2X) as a simple approach was proposed to reduce \n<inline-formula> <tex-math>$R_{\\mathrm { cable}}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$I_{\\mathrm { load}}$ </tex-math></inline-formula>\n per cable, which resulted in 53%, 53%, and 28% reduction in \n<inline-formula> <tex-math>$P_{\\mathrm { loss}}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$V_{\\mathrm { drop}}$ </tex-math></inline-formula>\n, and THD\n<inline-formula> <tex-math>$_{V}$ </tex-math></inline-formula>\n, respectively. The additional cable investment can be recovered by the savings from the \n<inline-formula> <tex-math>$P_{\\mathrm { loss}}$ </tex-math></inline-formula>\n reduction, which was estimated at four years. Moreover, complying with the recommended THD\n<inline-formula> <tex-math>$_{V}$ </tex-math></inline-formula>\n value (below 8%) was more difficult than keeping \n<inline-formula> <tex-math>$V_{\\mathrm { drop}}$ </tex-math></inline-formula>\n below 10%, because it requires lower \n<inline-formula> <tex-math>$R_{\\mathrm { cable}}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$I_{\\mathrm { load}}$ </tex-math></inline-formula>\n.","PeriodicalId":100625,"journal":{"name":"IEEE Letters on Electromagnetic Compatibility Practice and Applications","volume":"6 2","pages":"72-78"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Letters on Electromagnetic Compatibility Practice and Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10498102/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Powerquality (PQ) is part of low-frequency electromagnetic interference (EMI), which could be present in any system. It is known that nonlinear loads pose PQ problems in large grids, but this problem is even more prevalent in smaller grids. However, the typical methods in addressing PQ problems might not be feasible in remote areas because of their challenging characteristics; hence, alternative approaches are needed. This letter investigates the significance of the cable characteristics and the nonlinear load current amplitude $(I_{\mathrm { load}})$ on the power losses $(P_{\mathrm { loss}})$ , voltage drop $(V_{\mathrm { drop}})$ , and total voltage harmonic distortions (THD $_{V}$ ) to effectively minimize them. The investigated cable parameters were based on the typical cable $2\times 16$ mm2 NFA2X. A high value of $P_{\mathrm { loss}}$ , $V_{\mathrm { drop}}$ , and THD $_{V}$ was found when the loads were highly nonlinear and the cable length was 1 km. A sensitivity showed that $R_{\mathrm { cable}}$ and $I_{\mathrm { load}}$ were more significant than $L_{\mathrm { cable}}$ and $C_{\mathrm { cable}}$ to the increase of $P_{\mathrm { loss}}$ , $V_{\mathrm { drop}}$ , and THD $_{V}$ . Therefore, using more parallel conductors ( $4\times 16$ mm2 NFA2X) as a simple approach was proposed to reduce $R_{\mathrm { cable}}$ and $I_{\mathrm { load}}$ per cable, which resulted in 53%, 53%, and 28% reduction in $P_{\mathrm { loss}}$ , $V_{\mathrm { drop}}$ , and THD $_{V}$ , respectively. The additional cable investment can be recovered by the savings from the $P_{\mathrm { loss}}$ reduction, which was estimated at four years. Moreover, complying with the recommended THD $_{V}$ value (below 8%) was more difficult than keeping $V_{\mathrm { drop}}$ below 10%, because it requires lower $R_{\mathrm { cable}}$ and $I_{\mathrm { load}}$ .
电缆和非线性负载对远程离网系统损耗、压降和谐波的影响
电能质量(PQ)是低频电磁干扰(EMI)的一部分,可能存在于任何系统中。众所周知,非线性负载会给大型电网带来电能质量问题,但这一问题在小型电网中更为普遍。然而,由于其具有挑战性的特点,解决 PQ 问题的典型方法在偏远地区可能并不可行;因此,需要采用其他方法。本文研究了电缆特性和非线性负载电流幅值 $(I_{\mathrm { load}})$ 对功率损耗 $(P_{\mathrm { loss}})$ 、电压降 $(V_{\mathrm { drop}})$ 和总电压谐波失真 (THD $_{V}$) 的影响,从而有效地将其最小化。所研究的电缆参数基于典型的电缆 $2\times 16$ mm2 NFA2X。当负载高度非线性且电缆长度为 1 千米时,发现 $P_{\mathrm { loss}}$ 、$V_{/mathrm { drop}}$ 和 THD $_{V}$ 的值很高。灵敏度显示,$R_{m\mathrm { cable}}$ 和 $I_{m\mathrm { load}}$ 比 $L_{m\mathrm { cable}}$ 和 $C_{m\mathrm { cable}}$ 对 $P_{m\mathrm { loss}}$ 、 $V_{m\mathrm { drop}}$ 和 THD $_{V}$ 的增加更为显著。因此,我们提出了一种简单的方法,即使用更多的并联导体(16 mm2 NFA2X 的 4 倍)来降低每根电缆的 $R_{\mathrm { cable}}$ 和 $I_{\mathrm { load}}$ ,从而使 $P_{\mathrm { loss}}$ 、 $V_{\mathrm { drop}}$ 和 THD $_{V}$ 分别降低 53%、53% 和 28%。额外的电缆投资可以通过减少 $P_{mathrm { loss}}$ 所节省的费用来收回,估计需要四年时间。此外,遵守建议的 THD $_{V}$ 值(低于 8%)比将 $V_{mathrm { drop}$ 保持在 10%以下更困难,因为这需要更低的 $R_{mathrm { cable}$ 和 $I_{mathrm { load}}$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信