{"title":"Novel Designs of SIW-Based Frequency-Selective Surfaces for Electromagnetic Shielding","authors":"Priyanka Das;B. T. P. Madhav","doi":"10.1109/LEMCPA.2024.3392012","DOIUrl":null,"url":null,"abstract":"The performance of the substrate-integrated waveguide (SIW)-based frequency-selective surface (FSS) is better than that of the traditional FSSs. Based on SIW cavity (SIWC) technology, two different types of ultrathin (\n<inline-formula> <tex-math>$0.01\\boldsymbol {\\lambda }_{\\mathbf {0}}$ </tex-math></inline-formula>\n) band-stop FSSs have been proposed for dual-band and broadband response. The first design combines two types of FSS slots based on the SIWC to display distinct characteristics in terms of their cavity designs and performance. The design consists of a Y-shaped slot in conjunction with an annular slot within a circular cavity. Consequently, the structure exhibits performance features of a sharp roll-off and dual band-stop response across 1.7–2.7 GHz and 4.6–5.6 GHz with a fractional bandwidth 45% and 20%, respectively. The second design comprises a slotted rectangular SIW cavity-based FSS which exhibits a wide band-reject response across 2.9–19.8 GHz with a fractional bandwidth of 149%. To validate the concept, tangible prototypes have been fabricated, and their functionality has been verified by measurements. The estimated and experimental results show a strong correlation.","PeriodicalId":100625,"journal":{"name":"IEEE Letters on Electromagnetic Compatibility Practice and Applications","volume":"6 2","pages":"62-66"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Letters on Electromagnetic Compatibility Practice and Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10506318/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of the substrate-integrated waveguide (SIW)-based frequency-selective surface (FSS) is better than that of the traditional FSSs. Based on SIW cavity (SIWC) technology, two different types of ultrathin (
$0.01\boldsymbol {\lambda }_{\mathbf {0}}$
) band-stop FSSs have been proposed for dual-band and broadband response. The first design combines two types of FSS slots based on the SIWC to display distinct characteristics in terms of their cavity designs and performance. The design consists of a Y-shaped slot in conjunction with an annular slot within a circular cavity. Consequently, the structure exhibits performance features of a sharp roll-off and dual band-stop response across 1.7–2.7 GHz and 4.6–5.6 GHz with a fractional bandwidth 45% and 20%, respectively. The second design comprises a slotted rectangular SIW cavity-based FSS which exhibits a wide band-reject response across 2.9–19.8 GHz with a fractional bandwidth of 149%. To validate the concept, tangible prototypes have been fabricated, and their functionality has been verified by measurements. The estimated and experimental results show a strong correlation.