The worst approximable rational numbers

Pub Date : 2024-05-20 DOI:10.1016/j.jnt.2024.04.013
Boris Springborn
{"title":"The worst approximable rational numbers","authors":"Boris Springborn","doi":"10.1016/j.jnt.2024.04.013","DOIUrl":null,"url":null,"abstract":"<div><p>We classify and enumerate all rational numbers with approximation constant at least <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> using hyperbolic geometry. Rational numbers correspond to geodesics in the modular torus with both ends in the cusp, and the approximation constant measures how far they stay out of the cusp neighborhood in between. Compared to the original approach, the geometric point of view eliminates the need to discuss the intricate symbolic dynamics of continued fraction representations, and it clarifies the distinction between the two types of worst approximable rationals: (1) There is a plane forest of <em>Markov fractions</em> whose denominators are Markov numbers. They correspond to simple geodesics in the modular torus with both ends in the cusp. (2) For each Markov fraction, there are two infinite sequences of <em>companions</em>, which correspond to non-simple geodesics with both ends in the cusp that do not intersect a pair of disjoint simple geodesics, one with both ends in the cusp and one closed.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001148/pdfft?md5=05527a34f5adb10106a0ae68575e41cc&pid=1-s2.0-S0022314X24001148-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We classify and enumerate all rational numbers with approximation constant at least 13 using hyperbolic geometry. Rational numbers correspond to geodesics in the modular torus with both ends in the cusp, and the approximation constant measures how far they stay out of the cusp neighborhood in between. Compared to the original approach, the geometric point of view eliminates the need to discuss the intricate symbolic dynamics of continued fraction representations, and it clarifies the distinction between the two types of worst approximable rationals: (1) There is a plane forest of Markov fractions whose denominators are Markov numbers. They correspond to simple geodesics in the modular torus with both ends in the cusp. (2) For each Markov fraction, there are two infinite sequences of companions, which correspond to non-simple geodesics with both ends in the cusp that do not intersect a pair of disjoint simple geodesics, one with both ends in the cusp and one closed.

分享
查看原文
最差近似有理数
我们利用双曲几何学对近似常数至少为 13 的所有有理数进行了分类和列举。有理数对应于模态环中两端都在尖顶的大地线,而近似常数则衡量它们在尖顶邻域之间的距离。与原来的方法相比,几何观点无需讨论续分数表示的复杂符号动态,而且澄清了两类最差可近似有理数之间的区别:(1) 存在一个分母为马尔可夫数的马尔可夫分数平面森林。它们对应于模环中两端都在尖顶的简单大地线。(2) 对于每个马尔可夫分数,都有两个无限序列的同伴,它们对应于两端都在顶点的非简单测地线,这些测地线不与一对互不相交的简单测地线相交,其中一个两端都在顶点,另一个封闭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信