Zhenyang Tian , Qi Dai , Bin Liu , Hui Lin , Huiping Ou
{"title":"LncARSR promotes glioma tumor growth by mediating glycolysis through the STAT3/HK2 axis","authors":"Zhenyang Tian , Qi Dai , Bin Liu , Hui Lin , Huiping Ou","doi":"10.1016/j.cyto.2024.156663","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Glioma represents the predominant malignant brain tumor. This investigation endeavors to elucidate the impact and prospective mechanisms of glycolysis-related lncARSR on glioma.</p></div><div><h3>Methods</h3><p>LncARSR level was assessed in normal glial cells and glioma cells. Cell proliferation, migration, and invasion measurements were conducted through CCK-8, wound healing, and transwell assay. Flow cytometry was utilized to measure cell apoptosis and cell cycle. Biochemical assay kits and immunoblotting were employed to measure the content of glycolysis-related indicators and protein expression, respectively. We analyzed the impact of both lncARSR knockdown and overexpression of the Signal Transducer and Activator of Transcription 3 (STAT3) on Hexokinase 2 (HK2) using dual luciferase reporter assays and Chromatin Immunoprecipitation (ChIP) experiments. Further assessment of the impact of lncARSR on glioma progression was conducted through animal experiments.</p></div><div><h3>Results</h3><p>LncARSR was expressed at elevated levels in glioma cells compared to normal glial cells. Overexpressing lncARSR enhanced proliferation, migration, invasion, and G2/M phase arrest in glioma cells and also increased glucose, lactate, ATP production, as well as the expression of HK2, PFK1, PKM2, GLUT1, and LDHA. STAT3 binding to the HK2 gene promoter was weakened following the knockdown of lncARSR. Upregulation of STAT3 reversed the suppressed functions of knocking down lncARSR on cell proliferation, migration, invasion, G2/M phase arrest, and glycolysis and counteracted its promotional effect on cell apoptosis. <em>In vivo</em>, knocking down lncARSR inhibits glioma growth and ki67 and PCNA expression.</p></div><div><h3>Conclusion</h3><p>LncARSR promotes the development of glioma by enhancing glycolysis through the STAT3-HK2 axis.</p></div>","PeriodicalId":297,"journal":{"name":"Cytokine","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043466624001662","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Glioma represents the predominant malignant brain tumor. This investigation endeavors to elucidate the impact and prospective mechanisms of glycolysis-related lncARSR on glioma.
Methods
LncARSR level was assessed in normal glial cells and glioma cells. Cell proliferation, migration, and invasion measurements were conducted through CCK-8, wound healing, and transwell assay. Flow cytometry was utilized to measure cell apoptosis and cell cycle. Biochemical assay kits and immunoblotting were employed to measure the content of glycolysis-related indicators and protein expression, respectively. We analyzed the impact of both lncARSR knockdown and overexpression of the Signal Transducer and Activator of Transcription 3 (STAT3) on Hexokinase 2 (HK2) using dual luciferase reporter assays and Chromatin Immunoprecipitation (ChIP) experiments. Further assessment of the impact of lncARSR on glioma progression was conducted through animal experiments.
Results
LncARSR was expressed at elevated levels in glioma cells compared to normal glial cells. Overexpressing lncARSR enhanced proliferation, migration, invasion, and G2/M phase arrest in glioma cells and also increased glucose, lactate, ATP production, as well as the expression of HK2, PFK1, PKM2, GLUT1, and LDHA. STAT3 binding to the HK2 gene promoter was weakened following the knockdown of lncARSR. Upregulation of STAT3 reversed the suppressed functions of knocking down lncARSR on cell proliferation, migration, invasion, G2/M phase arrest, and glycolysis and counteracted its promotional effect on cell apoptosis. In vivo, knocking down lncARSR inhibits glioma growth and ki67 and PCNA expression.
Conclusion
LncARSR promotes the development of glioma by enhancing glycolysis through the STAT3-HK2 axis.
期刊介绍:
The journal Cytokine has an open access mirror journal Cytokine: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
* Devoted exclusively to the study of the molecular biology, genetics, biochemistry, immunology, genome-wide association studies, pathobiology, diagnostic and clinical applications of all known interleukins, hematopoietic factors, growth factors, cytotoxins, interferons, new cytokines, and chemokines, Cytokine provides comprehensive coverage of cytokines and their mechanisms of actions, 12 times a year by publishing original high quality refereed scientific papers from prominent investigators in both the academic and industrial sectors.
We will publish 3 major types of manuscripts:
1) Original manuscripts describing research results.
2) Basic and clinical reviews describing cytokine actions and regulation.
3) Short commentaries/perspectives on recently published aspects of cytokines, pathogenesis and clinical results.