Shi-Ya Xie, Yan-Jie Yang, Zhen Jin, Xiao-Cong Liu, Shu-Ping Zhang, Ning Su, Jia-Qi Liu, Cong-Rong Li, Dong Zhang, Lei-Lei Gao, Zhi-Xia Yang
{"title":"Mouse KL2 is a unique MTSE involved in chromosome-based spindle organization and regulated by multiple kinases during female meiosis.","authors":"Shi-Ya Xie, Yan-Jie Yang, Zhen Jin, Xiao-Cong Liu, Shu-Ping Zhang, Ning Su, Jia-Qi Liu, Cong-Rong Li, Dong Zhang, Lei-Lei Gao, Zhi-Xia Yang","doi":"10.7555/JBR.37.20230290","DOIUrl":null,"url":null,"abstract":"<p><p>Microtubule-severing enzymes (MTSEs) play important roles in mitosis and meiosis of the primitive organisms. However, no studies have assessed their roles in mammalian meiosis of females, whose abnormality accounts for over 80% of the cases of gamete-originated human reproductive disease. In the current study, we reported that katanin-like 2 (KL2) was the only MTSE concentrating at chromosomes. Furthermore, the knockdown of <i>KL2</i> significantly reduced chromosome-based increase in the microtubule (MT) polymer, increased aberrant kinetochore-MT (K-MT) attachment, delayed meiosis, and severely affected normal fertility. Importantly, we demonstrated that the inhibition of aurora B, a key kinase for correcting aberrant K-MT attachment, eliminated KL2 from chromosomes completely. KL2 also interacted with phosphorylated eukaryotic elongation factor-2 kinase; they competed for chromosome binding. We also observed that the phosphorylated KL2 was localized at spindle poles, and that KL2 phosphorylation was regulated by extracellular signal-regulated kinase 1/2. In summary, our study reveals a novel function of MTSEs in mammalian female meiosis and demonstrates that multiple kinases coordinate to regulate the levels of KL2 at chromosomes.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":" ","pages":"1-15"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461529/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7555/JBR.37.20230290","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microtubule-severing enzymes (MTSEs) play important roles in mitosis and meiosis of the primitive organisms. However, no studies have assessed their roles in mammalian meiosis of females, whose abnormality accounts for over 80% of the cases of gamete-originated human reproductive disease. In the current study, we reported that katanin-like 2 (KL2) was the only MTSE concentrating at chromosomes. Furthermore, the knockdown of KL2 significantly reduced chromosome-based increase in the microtubule (MT) polymer, increased aberrant kinetochore-MT (K-MT) attachment, delayed meiosis, and severely affected normal fertility. Importantly, we demonstrated that the inhibition of aurora B, a key kinase for correcting aberrant K-MT attachment, eliminated KL2 from chromosomes completely. KL2 also interacted with phosphorylated eukaryotic elongation factor-2 kinase; they competed for chromosome binding. We also observed that the phosphorylated KL2 was localized at spindle poles, and that KL2 phosphorylation was regulated by extracellular signal-regulated kinase 1/2. In summary, our study reveals a novel function of MTSEs in mammalian female meiosis and demonstrates that multiple kinases coordinate to regulate the levels of KL2 at chromosomes.