Pengxi Shi, Ao Tan, Yuanyuan Ma, Lingli Que, Chuanfu Li, Yongfeng Shao, Haoliang Sun, Yuehua Li, Jiantao Li
{"title":"MicroRNA-19a-3p augments TGF-β1-induced cardiac fibroblast activation <i>via</i> targeting BAMBI.","authors":"Pengxi Shi, Ao Tan, Yuanyuan Ma, Lingli Que, Chuanfu Li, Yongfeng Shao, Haoliang Sun, Yuehua Li, Jiantao Li","doi":"10.7555/JBR.37.20230313","DOIUrl":null,"url":null,"abstract":"<p><p>The main pathogenic factor leading to cardiac remodeling and heart failure is myocardial fibrosis. Recent research indicates that microRNAs are essential for the progress of cardiac fibrosis. Myocardial fibrosis is considered to be alleviated through the bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), which does this by blocking the transforming growth factor β1 (TGF-β1) signaling pathway. Here, this study sought to elucidate the post-transcriptional regulation of miR-19a-3p on BAMBI and its role in TGF-β1-induced cardiac fibroblast activation. Transverse aortic constriction (TAC) caused both myocardial interstitial and perivascular collagen deposition. RT-PCR showed that miR-19a-3p was upregulated in the myocardial tissue of cardiac fibrosis, and TGF-β1 induced an increase of miR-19a-3p expression in cardiac fibroblasts. The dual-luciferase reporter test and qRT-PCR confirmed that miR-19a-3p directly combined with BAMBI mRNA 3'UTR, thus reduced BAMBI expression, which diminished the capability of BAMBI to inhibit TGF-β1. Furthermore, miR-19a-3p mimic increased the activation of TGF-β1/SMAD2/3 pathway signaling, which supported cardiac fibroblast activation, which blocked by overexpression of BAMBI. These findings imply that miR-19a-3p enhances the activation of TGF-β1/SMAD2/3 by inhibiting BAMBI, further boosting the activation of cardiac fibroblasts, and may thus offer a novel strategy to tackling myocardial fibrosis.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":" ","pages":"1-14"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7555/JBR.37.20230313","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The main pathogenic factor leading to cardiac remodeling and heart failure is myocardial fibrosis. Recent research indicates that microRNAs are essential for the progress of cardiac fibrosis. Myocardial fibrosis is considered to be alleviated through the bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), which does this by blocking the transforming growth factor β1 (TGF-β1) signaling pathway. Here, this study sought to elucidate the post-transcriptional regulation of miR-19a-3p on BAMBI and its role in TGF-β1-induced cardiac fibroblast activation. Transverse aortic constriction (TAC) caused both myocardial interstitial and perivascular collagen deposition. RT-PCR showed that miR-19a-3p was upregulated in the myocardial tissue of cardiac fibrosis, and TGF-β1 induced an increase of miR-19a-3p expression in cardiac fibroblasts. The dual-luciferase reporter test and qRT-PCR confirmed that miR-19a-3p directly combined with BAMBI mRNA 3'UTR, thus reduced BAMBI expression, which diminished the capability of BAMBI to inhibit TGF-β1. Furthermore, miR-19a-3p mimic increased the activation of TGF-β1/SMAD2/3 pathway signaling, which supported cardiac fibroblast activation, which blocked by overexpression of BAMBI. These findings imply that miR-19a-3p enhances the activation of TGF-β1/SMAD2/3 by inhibiting BAMBI, further boosting the activation of cardiac fibroblasts, and may thus offer a novel strategy to tackling myocardial fibrosis.