Yifei Cheng, Rongjie Shi, Shuai Ben, Silu Chen, Shuwei Li, Junyi Xin, Meilin Wang, Gong Cheng
{"title":"Genetic variation of <i>circHIBADH</i> enhances prostate cancer risk through regulating HNRNPA1-related RNA splicing.","authors":"Yifei Cheng, Rongjie Shi, Shuai Ben, Silu Chen, Shuwei Li, Junyi Xin, Meilin Wang, Gong Cheng","doi":"10.7555/JBR.38.20240030","DOIUrl":null,"url":null,"abstract":"<p><p>The current study aimed to investigate associations of circRNAs and related genetic variants with the risk of prostate cancer (PCa) as well as to elucidate biological mechanisms underlying the associations. We first compared expression levels of circRNAs between 25 paired PCa and adjacent normal tissues to identify risk-associated circRNAs by using the MiOncoCirc database. We then used logistic regression models to evaluate associations between genetic variants in candidate circRNAs and PCa risk among 4662 prostate cancer patients and 3114 healthy controls, and identified <i>circHIBADH</i> rs11973492 T>C as a significant risk-associated variant (odds ratio = 1.20, 95% confidence interval: 1.08-1.34, <i>P</i> = 7.06 × 10 <sup>-4</sup>) in a dominant genetic model, which altered the secondary structure of the corresponding RNA chain. In the <i>in</i> <i>silico</i> analysis, we found that <i>circHIBADH</i> sponged and silenced 21 RNA-binding proteins (RBPs) enriched in the RNA splicing pathway, among which HNRNPA1 was identified and validated as a hub RBP using an external RNA-sequencing data as well as the in-house (four tissue samples) and publicly available single-cell transcriptomes. Additionally, we demonstrated that HNRNPA1 influenced hallmarks including MYC target, DNA repair, and E2F target signaling pathways, thereby promoting carcinogenesis. In conclusion, genetic variants in <i>circHIBADH</i> may act as sponges and inhibitors of RNA splicing-associated RBPs including HNRNPA1, playing an oncogenic role in PCa.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":" ","pages":"358-368"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300518/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7555/JBR.38.20240030","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The current study aimed to investigate associations of circRNAs and related genetic variants with the risk of prostate cancer (PCa) as well as to elucidate biological mechanisms underlying the associations. We first compared expression levels of circRNAs between 25 paired PCa and adjacent normal tissues to identify risk-associated circRNAs by using the MiOncoCirc database. We then used logistic regression models to evaluate associations between genetic variants in candidate circRNAs and PCa risk among 4662 prostate cancer patients and 3114 healthy controls, and identified circHIBADH rs11973492 T>C as a significant risk-associated variant (odds ratio = 1.20, 95% confidence interval: 1.08-1.34, P = 7.06 × 10 -4) in a dominant genetic model, which altered the secondary structure of the corresponding RNA chain. In the insilico analysis, we found that circHIBADH sponged and silenced 21 RNA-binding proteins (RBPs) enriched in the RNA splicing pathway, among which HNRNPA1 was identified and validated as a hub RBP using an external RNA-sequencing data as well as the in-house (four tissue samples) and publicly available single-cell transcriptomes. Additionally, we demonstrated that HNRNPA1 influenced hallmarks including MYC target, DNA repair, and E2F target signaling pathways, thereby promoting carcinogenesis. In conclusion, genetic variants in circHIBADH may act as sponges and inhibitors of RNA splicing-associated RBPs including HNRNPA1, playing an oncogenic role in PCa.