Zhaoye Qian, Zhe Zhang, Lanqi Cen, Yaohua Ke, Jie Shao, Manman Tian, Baorui Liu
{"title":"<i>Mycobacterium smegmatis</i> enhances shikonin-induced immunogenic cell death-an efficient <i>in situ</i> tumor vaccine strategy.","authors":"Zhaoye Qian, Zhe Zhang, Lanqi Cen, Yaohua Ke, Jie Shao, Manman Tian, Baorui Liu","doi":"10.7555/JBR.38.20240049","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor vaccines are a promising avenue in cancer immunotherapy. Despite the progress in targeting specific immune epitopes, tumor cells lacking these epitopes can evade the treatment. Here, we aimed to construct an efficient <i>in situ</i> tumor vaccine called Vac-SM, utilizing shikonin (SKN) to induce immunogenic cell death (ICD) and <i>Mycobacterium smegmatis</i> as an immune adjuvant to enhance <i>in situ</i> tumor vaccine efficacy. SKN showed a dose-dependent and time-dependent cytotoxic effect on the tumor cell line and induced ICD in tumor cells as evidenced by the CCK-8 assay and the detection of the expression of relevant indicators, respectively. Compared with the control group, the <i>in situ</i> Vac-SM injection in mouse subcutaneous metastatic tumors significantly inhibited tumor growth and distant tumor metastasis, while also improving survival rates. <i>Mycobacterium</i> <i>smegmatis</i> effectively induced maturation and activation of bone marrow-derived dendritic cells (DCs), and <i>in vivo</i> tumor-draining lymph nodes showed an increased maturation of DCs and a higher proportion of effector memory T-cell subsets with the Vac-SM treatment, based on flow cytometry analysis results. Collectively, the Vac-SM vaccine effectively induces ICD, improves antigen presentation by DCs, activates a specific systemic antitumor T-cell immune response, exhibits a favorable safety profile, and holds the promise for clinical translation for local tumor immunotherapy.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":" ","pages":"369-381"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300524/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7555/JBR.38.20240049","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor vaccines are a promising avenue in cancer immunotherapy. Despite the progress in targeting specific immune epitopes, tumor cells lacking these epitopes can evade the treatment. Here, we aimed to construct an efficient in situ tumor vaccine called Vac-SM, utilizing shikonin (SKN) to induce immunogenic cell death (ICD) and Mycobacterium smegmatis as an immune adjuvant to enhance in situ tumor vaccine efficacy. SKN showed a dose-dependent and time-dependent cytotoxic effect on the tumor cell line and induced ICD in tumor cells as evidenced by the CCK-8 assay and the detection of the expression of relevant indicators, respectively. Compared with the control group, the in situ Vac-SM injection in mouse subcutaneous metastatic tumors significantly inhibited tumor growth and distant tumor metastasis, while also improving survival rates. Mycobacteriumsmegmatis effectively induced maturation and activation of bone marrow-derived dendritic cells (DCs), and in vivo tumor-draining lymph nodes showed an increased maturation of DCs and a higher proportion of effector memory T-cell subsets with the Vac-SM treatment, based on flow cytometry analysis results. Collectively, the Vac-SM vaccine effectively induces ICD, improves antigen presentation by DCs, activates a specific systemic antitumor T-cell immune response, exhibits a favorable safety profile, and holds the promise for clinical translation for local tumor immunotherapy.