Structural insights into starch-metabolizing enzymes and their applications.

IF 1.4 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Takayoshi Tagami
{"title":"Structural insights into starch-metabolizing enzymes and their applications.","authors":"Takayoshi Tagami","doi":"10.1093/bbb/zbae069","DOIUrl":null,"url":null,"abstract":"<p><p>Starch is a polysaccharide produced exclusively through photosynthesis in plants and algae; however, is utilized as an energy source by most organisms, from microorganisms to higher organisms. In mammals and the germinating seeds of plants, starch is metabolized by simple hydrolysis pathways. Moreover, starch metabolic pathways via unique oligosaccharides have been discovered in some bacteria. Each organism has evolved enzymes responsible for starch metabolism that are diverse in their enzymatic properties. This review, focusing on eukaryotic α-glucosidases and bacterial α-glucoside-hydrolyzing enzymes, summarizes the structural aspects of starch-metabolizing enzymes belonging to glycoside hydrolase families 15, 31, and 77 and their application for oligosaccharide production.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae069","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Starch is a polysaccharide produced exclusively through photosynthesis in plants and algae; however, is utilized as an energy source by most organisms, from microorganisms to higher organisms. In mammals and the germinating seeds of plants, starch is metabolized by simple hydrolysis pathways. Moreover, starch metabolic pathways via unique oligosaccharides have been discovered in some bacteria. Each organism has evolved enzymes responsible for starch metabolism that are diverse in their enzymatic properties. This review, focusing on eukaryotic α-glucosidases and bacterial α-glucoside-hydrolyzing enzymes, summarizes the structural aspects of starch-metabolizing enzymes belonging to glycoside hydrolase families 15, 31, and 77 and their application for oligosaccharide production.

对淀粉代谢酶及其应用的结构研究。
淀粉是一种多糖,只通过植物和藻类的光合作用产生;但从微生物到高等生物,大多数生物都将淀粉用作能量来源。在哺乳动物和植物发芽的种子中,淀粉通过简单的水解途径进行代谢。此外,在一些细菌中还发现了通过独特的低聚糖进行淀粉代谢的途径。每种生物都进化出了负责淀粉代谢的酶,它们的酶特性各不相同。本综述以真核生物的α-葡萄糖苷酶和细菌的α-葡萄糖苷水解酶为重点,总结了属于苷水解酶家族 15、31 和 77 的淀粉代谢酶的结构及其在寡糖生产中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioscience, Biotechnology, and Biochemistry
Bioscience, Biotechnology, and Biochemistry 生物-生化与分子生物学
CiteScore
3.50
自引率
0.00%
发文量
183
审稿时长
1 months
期刊介绍: Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信