Co-Co and Co-Zn bimetallic complexes for electrocatalytic CO2 reduction: The role of interrelated intramolecular effects on activity

IF 11.5 Q1 CHEMISTRY, PHYSICAL
Jukai Zhou, Weixuan Nie, Drew E. Tarnopol, Charles C.L. McCrory
{"title":"Co-Co and Co-Zn bimetallic complexes for electrocatalytic CO2 reduction: The role of interrelated intramolecular effects on activity","authors":"Jukai Zhou, Weixuan Nie, Drew E. Tarnopol, Charles C.L. McCrory","doi":"10.1016/j.checat.2024.101006","DOIUrl":null,"url":null,"abstract":"<p>A key knowledge gap in developing multimetallic architectures for electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) is the difference in per-site activity compared to their molecular catalyst analogs. Here, we have carefully designed a model system of homo- and heterobimetallic catalysts to study how intramolecular effects such as internal electrostatics and electronic coupling influence catalytic activity. We demonstrate that intramolecular electrostatics is a crucial influence on the per-site activity. The larger electrostatics exerted by Zn<sup>2+</sup> in heterobimetallic [Zn(PDI)-(PDI)Co] results in higher catalytic activity for CO<sub>2</sub>RR compared to the other catalysts, especially compared to the parent monometallic [Co(PDI)]: &gt; 2 orders of magnitude larger TOF<sub>cat</sub> and &gt; 7 orders of magnitude larger TOF<sub>0</sub>. Notably, replacing a possible Co active site in homobimetallic [Co(PDI)-(PDI)Co] with a redox-inert Zn<sup>2+</sup> leads to an increase, not decrease, in activity, which provides a promising design strategy for multimetallic assemblies incorporating both redox-active and redox-inert metal sites.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A key knowledge gap in developing multimetallic architectures for electrochemical CO2 reduction reaction (CO2RR) is the difference in per-site activity compared to their molecular catalyst analogs. Here, we have carefully designed a model system of homo- and heterobimetallic catalysts to study how intramolecular effects such as internal electrostatics and electronic coupling influence catalytic activity. We demonstrate that intramolecular electrostatics is a crucial influence on the per-site activity. The larger electrostatics exerted by Zn2+ in heterobimetallic [Zn(PDI)-(PDI)Co] results in higher catalytic activity for CO2RR compared to the other catalysts, especially compared to the parent monometallic [Co(PDI)]: > 2 orders of magnitude larger TOFcat and > 7 orders of magnitude larger TOF0. Notably, replacing a possible Co active site in homobimetallic [Co(PDI)-(PDI)Co] with a redox-inert Zn2+ leads to an increase, not decrease, in activity, which provides a promising design strategy for multimetallic assemblies incorporating both redox-active and redox-inert metal sites.

Abstract Image

用于电催化二氧化碳还原的 Co-Co 和 Co-Zn 双金属配合物:相互关联的分子内效应对活性的作用
在开发用于电化学二氧化碳还原反应(CO2RR)的多金属结构方面,一个关键的知识空白是与分子催化剂类似物相比,每个位点活性的差异。在此,我们精心设计了一个由同双金属和异双金属催化剂组成的模型系统,以研究内部静电和电子耦合等分子内效应如何影响催化活性。我们证明,分子内静电对每个位点的活性有着至关重要的影响。与其他催化剂相比,异种双金属 [Zn(PDI)-(PDI)Co] 中 Zn2+ 产生的静电更大,因此 CO2RR 的催化活性更高,尤其是与母体单金属 [Co(PDI)] 相比:TOFcat 大 2 个数量级,TOF0 大 7 个数量级。值得注意的是,用氧化还原惰性 Zn2+ 取代同双金属 [Co(PDI)-(PDI)Co] 中可能存在的 Co 活性位点会导致活性不降反升,这为同时具有氧化还原活性和氧化还原惰性金属位点的多金属组合物提供了一种前景广阔的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信