Evidence-Based Learning Strategies in Medicine Using AI.

IF 3.2 Q1 EDUCATION, SCIENTIFIC DISCIPLINES
Juan Pablo Arango-Ibanez, Jose Alejandro Posso-Nuñez, Juan Pablo Díaz-Solórzano, Gustavo Cruz-Suárez
{"title":"Evidence-Based Learning Strategies in Medicine Using AI.","authors":"Juan Pablo Arango-Ibanez, Jose Alejandro Posso-Nuñez, Juan Pablo Díaz-Solórzano, Gustavo Cruz-Suárez","doi":"10.2196/54507","DOIUrl":null,"url":null,"abstract":"<p><strong>Unlabelled: </strong>Large language models (LLMs), like ChatGPT, are transforming the landscape of medical education. They offer a vast range of applications, such as tutoring (personalized learning), patient simulation, generation of examination questions, and streamlined access to information. The rapid advancement of medical knowledge and the need for personalized learning underscore the relevance and timeliness of exploring innovative strategies for integrating artificial intelligence (AI) into medical education. In this paper, we propose coupling evidence-based learning strategies, such as active recall and memory cues, with AI to optimize learning. These strategies include the generation of tests, mnemonics, and visual cues.</p>","PeriodicalId":36236,"journal":{"name":"JMIR Medical Education","volume":"10 ","pages":"e54507"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144835/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/54507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

Abstract

Unlabelled: Large language models (LLMs), like ChatGPT, are transforming the landscape of medical education. They offer a vast range of applications, such as tutoring (personalized learning), patient simulation, generation of examination questions, and streamlined access to information. The rapid advancement of medical knowledge and the need for personalized learning underscore the relevance and timeliness of exploring innovative strategies for integrating artificial intelligence (AI) into medical education. In this paper, we propose coupling evidence-based learning strategies, such as active recall and memory cues, with AI to optimize learning. These strategies include the generation of tests, mnemonics, and visual cues.

利用人工智能的循证医学学习策略。
无标签:大型语言模型(LLM),如 ChatGPT,正在改变医学教育的面貌。它们提供了广泛的应用,如辅导(个性化学习)、病人模拟、生成考题和简化信息访问。医学知识的飞速发展和个性化学习的需求凸显了探索将人工智能(AI)融入医学教育的创新策略的现实意义和及时性。在本文中,我们建议将基于证据的学习策略(如主动回忆和记忆线索)与人工智能相结合,以优化学习。这些策略包括生成测试、记忆法和视觉提示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JMIR Medical Education
JMIR Medical Education Social Sciences-Education
CiteScore
6.90
自引率
5.60%
发文量
54
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信