{"title":"A back propagation neural network based respiratory motion modelling method","authors":"Shan Jiang, Bowen Li, Zhiyong Yang, Yuhua Li, Zeyang Zhou","doi":"10.1002/rcs.2647","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>This study presents the development of a backpropagation neural network-based respiratory motion modelling method (BP-RMM) for precisely tracking arbitrary points within lung tissue throughout free respiration, encompassing deep inspiration and expiration phases.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Internal and external respiratory data from four-dimensional computed tomography (4DCT) are processed using various artificial intelligence algorithms. Data augmentation through polynomial interpolation is employed to enhance dataset robustness. A BP neural network is then constructed to comprehensively track lung tissue movement.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The BP-RMM demonstrates promising accuracy. In cases from the public 4DCT dataset, the average target registration error (TRE) between authentic deep respiration phases and those forecasted by BP-RMM for 75 marked points is 1.819 mm. Notably, TRE for normal respiration phases is significantly lower, with a minimum error of 0.511 mm.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The proposed method is validated for its high accuracy and robustness, establishing it as a promising tool for surgical navigation within the lung.</p>\n </section>\n </div>","PeriodicalId":50311,"journal":{"name":"International Journal of Medical Robotics and Computer Assisted Surgery","volume":"20 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Robotics and Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcs.2647","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
This study presents the development of a backpropagation neural network-based respiratory motion modelling method (BP-RMM) for precisely tracking arbitrary points within lung tissue throughout free respiration, encompassing deep inspiration and expiration phases.
Methods
Internal and external respiratory data from four-dimensional computed tomography (4DCT) are processed using various artificial intelligence algorithms. Data augmentation through polynomial interpolation is employed to enhance dataset robustness. A BP neural network is then constructed to comprehensively track lung tissue movement.
Results
The BP-RMM demonstrates promising accuracy. In cases from the public 4DCT dataset, the average target registration error (TRE) between authentic deep respiration phases and those forecasted by BP-RMM for 75 marked points is 1.819 mm. Notably, TRE for normal respiration phases is significantly lower, with a minimum error of 0.511 mm.
Conclusions
The proposed method is validated for its high accuracy and robustness, establishing it as a promising tool for surgical navigation within the lung.
期刊介绍:
The International Journal of Medical Robotics and Computer Assisted Surgery provides a cross-disciplinary platform for presenting the latest developments in robotics and computer assisted technologies for medical applications. The journal publishes cutting-edge papers and expert reviews, complemented by commentaries, correspondence and conference highlights that stimulate discussion and exchange of ideas. Areas of interest include robotic surgery aids and systems, operative planning tools, medical imaging and visualisation, simulation and navigation, virtual reality, intuitive command and control systems, haptics and sensor technologies. In addition to research and surgical planning studies, the journal welcomes papers detailing clinical trials and applications of computer-assisted workflows and robotic systems in neurosurgery, urology, paediatric, orthopaedic, craniofacial, cardiovascular, thoraco-abdominal, musculoskeletal and visceral surgery. Articles providing critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies, commenting on ease of use, or addressing surgical education and training issues are also encouraged. The journal aims to foster a community that encompasses medical practitioners, researchers, and engineers and computer scientists developing robotic systems and computational tools in academic and commercial environments, with the intention of promoting and developing these exciting areas of medical technology.