{"title":"Photodynamic antibacterial research on hypericin-loaded PEGylated mesoporous silica delivery system.","authors":"Xiaojiang Huang, Yifeng Zhan, Zhixin Xiao, Shibo He, Lifei Hu, Hongda Zhu, Huiling Guo, Hongmei Sun, Mingxing Liu","doi":"10.1080/09205063.2024.2356961","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a novel drug delivery system (MSN-PEG-Hypericin) was successfully fabricated using tetraethyl orthosilicate and 3-aminopropyltriethoxysilane as raw materials, and the PEGylation of the prepared aminated mesoporous silica and grafting of hypericin onto the carrier were further conducted to obtain MSN-PEG-Hypericin. The successful preparation of MSN-PEG-Hypericin was characterized by several physical-chemical techniques. Furthermore, the MSN-PEG-Hypericin system increased the ability of hypericin to generate reactive oxygen species (ROS) <i>in vitro</i>. The cytotoxicity assay and hemolysis analysis showed that MSN-PEG-Hypericin had good biocompatibility. For antibacterial studies, the irradiation time and incubation time of photodynamic therapy (PDT) for <i>S. aureus</i> and <i>E. coli</i> were respectively 8 min and 8 h, and the concentrations of hypericin were 2.5 and 5 μg/mL. The result of triphenyl tetrazolium chloride assay indicated that MSN-PEG-Hypericin had stronger photodynamic antibacterial activity than free hypericin, and <i>S. aureus</i> was more sensitive to PDT than <i>E. coli</i>, which was related to their cell structural differences. The antibacterial mechanism study indicated that the generated ROS could destroy the bacterial structures and cause bacterial death due to the leakage of the contents. The MSN-PEG-Hypericin system prepared in this study had potential application prospects in the antibacterial field.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1795-1818"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2356961","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a novel drug delivery system (MSN-PEG-Hypericin) was successfully fabricated using tetraethyl orthosilicate and 3-aminopropyltriethoxysilane as raw materials, and the PEGylation of the prepared aminated mesoporous silica and grafting of hypericin onto the carrier were further conducted to obtain MSN-PEG-Hypericin. The successful preparation of MSN-PEG-Hypericin was characterized by several physical-chemical techniques. Furthermore, the MSN-PEG-Hypericin system increased the ability of hypericin to generate reactive oxygen species (ROS) in vitro. The cytotoxicity assay and hemolysis analysis showed that MSN-PEG-Hypericin had good biocompatibility. For antibacterial studies, the irradiation time and incubation time of photodynamic therapy (PDT) for S. aureus and E. coli were respectively 8 min and 8 h, and the concentrations of hypericin were 2.5 and 5 μg/mL. The result of triphenyl tetrazolium chloride assay indicated that MSN-PEG-Hypericin had stronger photodynamic antibacterial activity than free hypericin, and S. aureus was more sensitive to PDT than E. coli, which was related to their cell structural differences. The antibacterial mechanism study indicated that the generated ROS could destroy the bacterial structures and cause bacterial death due to the leakage of the contents. The MSN-PEG-Hypericin system prepared in this study had potential application prospects in the antibacterial field.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.