{"title":"[Research progress on pneumoconiosis markers based on multi-omics analysis].","authors":"Q Chen, W H Chen, M J Chu","doi":"10.3760/cma.j.cn121094-20230321-00089","DOIUrl":null,"url":null,"abstract":"<p><p>The etiology of pneumoconiosis is relatively clear, but the pathogenic mechanism is not fully understood, and there is no effective cure for pneumoconiosis. Clarifying the pathogenesis of pneumoconiosis and exploring relevant markers can help screen high-risk groups of dust exposure, and relevant markers can also be used as targets to intervene in the process of pulmonary fibrosis. The in-depth development of genomics, transcriptomics and proteomics has provided a new way to discover more potential markers of pneumoconiosis. In the future, the combination of multi-omics and multi-stage interactive analysis can systematically and comprehensively identify key genes (proteins) , metabolites and metabolic pathways in the occurrence and development of pneumoconiosis, build a core regulatory network, and then screen out sensitive markers related to early diagnosis and treatment of pneumoconiosis. This article summarizes the research progress of pneumoconiosis markers from the perspective of multi-omics, hoping to provide more basic data for the early prevention and diagnosis of pneumoconiosis, pathogenesis research, and therapeutic intervention.</p>","PeriodicalId":23958,"journal":{"name":"中华劳动卫生职业病杂志","volume":"42 5","pages":"384-395"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华劳动卫生职业病杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/cma.j.cn121094-20230321-00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The etiology of pneumoconiosis is relatively clear, but the pathogenic mechanism is not fully understood, and there is no effective cure for pneumoconiosis. Clarifying the pathogenesis of pneumoconiosis and exploring relevant markers can help screen high-risk groups of dust exposure, and relevant markers can also be used as targets to intervene in the process of pulmonary fibrosis. The in-depth development of genomics, transcriptomics and proteomics has provided a new way to discover more potential markers of pneumoconiosis. In the future, the combination of multi-omics and multi-stage interactive analysis can systematically and comprehensively identify key genes (proteins) , metabolites and metabolic pathways in the occurrence and development of pneumoconiosis, build a core regulatory network, and then screen out sensitive markers related to early diagnosis and treatment of pneumoconiosis. This article summarizes the research progress of pneumoconiosis markers from the perspective of multi-omics, hoping to provide more basic data for the early prevention and diagnosis of pneumoconiosis, pathogenesis research, and therapeutic intervention.