{"title":"Correlation between biomedical and structural properties of Zn/Sr modified calcium phosphates","authors":"Atipong Bootchanont, Natthaphon Chaosuan, Sasina Promdee, Jantima Teeka, Pinit Kidkhunthod, Rattikorn Yimnirun, Wutthigrai Sailuam, Nutthaporn Isran, Arreerat Jiamprasertboon, Theeranun Siritanon, Tanachat Eknapakul, Thanit Saisopa","doi":"10.1007/s10534-024-00599-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the correlation between the biomedical and structural properties of Zn/Sr-modified Calcium Phosphates (ZnSr–CaPs) synthesized via the sol–gel combustion method. X-ray diffraction (XRD) analysis revealed the presence of Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub> (HAp), CaCO<sub>3</sub>, and Ca(OH)<sub>2</sub> phases in the undoped sample, while the additional phase, Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> (β-TCP) was formed in modified samples. X-ray absorption near-edge structure (XANES) analysis demonstrated the incorporation of Sr into the lattice, with a preference for occupying the Ca1 sites in the HAp matrix. The introduction of Zn, furthermore, led to the formation of ZnO and CaZnO<sub>2</sub> species. The ZnSr–CaPs exhibited significant antibacterial activity attributed to the generation of reactive oxygen species by ZnO, the oxidation reaction of CaZnO<sub>2</sub>, and the presence of Sr ions. Cytotoxicity tests revealed a correlation between the variation in ZnO content and cellular viability, with lower ZnO concentrations corresponding to higher cell viability. Additionally, the cooperative effects of Zn and Sr ions were found to enhance the bioactivity of CaPs, despite ZnO hindering the apatite formation process. These findings contribute to the deep understanding of the diverse role in modulating the antibacterial, cytotoxic, and bioactive properties of ZnSr–CaPs, offering potential applications in the field of biomaterials.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1177 - 1189"},"PeriodicalIF":4.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10534-024-00599-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the correlation between the biomedical and structural properties of Zn/Sr-modified Calcium Phosphates (ZnSr–CaPs) synthesized via the sol–gel combustion method. X-ray diffraction (XRD) analysis revealed the presence of Ca10(PO4)6(OH)2 (HAp), CaCO3, and Ca(OH)2 phases in the undoped sample, while the additional phase, Ca3(PO4)2 (β-TCP) was formed in modified samples. X-ray absorption near-edge structure (XANES) analysis demonstrated the incorporation of Sr into the lattice, with a preference for occupying the Ca1 sites in the HAp matrix. The introduction of Zn, furthermore, led to the formation of ZnO and CaZnO2 species. The ZnSr–CaPs exhibited significant antibacterial activity attributed to the generation of reactive oxygen species by ZnO, the oxidation reaction of CaZnO2, and the presence of Sr ions. Cytotoxicity tests revealed a correlation between the variation in ZnO content and cellular viability, with lower ZnO concentrations corresponding to higher cell viability. Additionally, the cooperative effects of Zn and Sr ions were found to enhance the bioactivity of CaPs, despite ZnO hindering the apatite formation process. These findings contribute to the deep understanding of the diverse role in modulating the antibacterial, cytotoxic, and bioactive properties of ZnSr–CaPs, offering potential applications in the field of biomaterials.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.