John Nikhil, Pootheri Maneesha, Kumari Chidambaran Chitra
{"title":"Neurotoxic effects of carbamazepine on the mosquitofish <i>Gambusia affinis</i>.","authors":"John Nikhil, Pootheri Maneesha, Kumari Chidambaran Chitra","doi":"10.1080/01480545.2024.2356048","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the presence of pharmaceuticals in the aquatic environment has gained a significant attention. Carbamazepine, a commonly prescribed antiepileptic drug, has been consistently found in aquatic environments at concentrations ranging from nanograms to micrograms, raising concerns about its potential negative impacts on aquatic organisms. The study examined the acute and chronic neurotoxic effects of environmentally relevant and sublethal concentrations of carbamazepine in the mosquitofish <i>Gambusia affinis</i>. After a 96-hour exposure period, the median lethal concentration (LC<sub>50</sub>) of carbamazepine for <i>G. affinis</i> was determined as 24 mg L <sup>- 1</sup>. For the current study, sublethal concentrations i.e., one-tenth (2.4 mg L <sup>- 1</sup>) and one-fifth (4.8 mg L <sup>- 1</sup>) of the LC<sub>50</sub> value were chosen for assessing the neurotoxic effects along with the environmentally relevant concentration (13 ng L <sup>- 1</sup>). The research findings indicated that carbamazepine had a disruptive impact on the typical growth and behavior of the fish. During the acute exposure phase, physical deformities were observed in the fish, resulting in neonatal and postneonatal fatalities. Furthermore, the neurotoxic effects of carbamazepine were clearly demonstrated through alterations in various neurological parameters, including acetylcholinesterase, dopamine, gamma-aminobutyric acid, serotonin, monoamine oxidase, 5-hydroxyindole acetic acid, adrenaline, and nor-adrenaline. These findings raise concerns about the survival of fish populations in their natural environment.</p>","PeriodicalId":11333,"journal":{"name":"Drug and Chemical Toxicology","volume":" ","pages":"1-15"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug and Chemical Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01480545.2024.2356048","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the presence of pharmaceuticals in the aquatic environment has gained a significant attention. Carbamazepine, a commonly prescribed antiepileptic drug, has been consistently found in aquatic environments at concentrations ranging from nanograms to micrograms, raising concerns about its potential negative impacts on aquatic organisms. The study examined the acute and chronic neurotoxic effects of environmentally relevant and sublethal concentrations of carbamazepine in the mosquitofish Gambusia affinis. After a 96-hour exposure period, the median lethal concentration (LC50) of carbamazepine for G. affinis was determined as 24 mg L - 1. For the current study, sublethal concentrations i.e., one-tenth (2.4 mg L - 1) and one-fifth (4.8 mg L - 1) of the LC50 value were chosen for assessing the neurotoxic effects along with the environmentally relevant concentration (13 ng L - 1). The research findings indicated that carbamazepine had a disruptive impact on the typical growth and behavior of the fish. During the acute exposure phase, physical deformities were observed in the fish, resulting in neonatal and postneonatal fatalities. Furthermore, the neurotoxic effects of carbamazepine were clearly demonstrated through alterations in various neurological parameters, including acetylcholinesterase, dopamine, gamma-aminobutyric acid, serotonin, monoamine oxidase, 5-hydroxyindole acetic acid, adrenaline, and nor-adrenaline. These findings raise concerns about the survival of fish populations in their natural environment.
期刊介绍:
Drug and Chemical Toxicology publishes full-length research papers, review articles and short communications that encompass a broad spectrum of toxicological data surrounding risk assessment and harmful exposure. Manuscripts are considered according to their relevance to the journal.
Topics include both descriptive and mechanics research that illustrates the risk assessment implications of exposure to toxic agents. Examples of suitable topics include toxicological studies, which are structural examinations on the effects of dose, metabolism, and statistical or mechanism-based approaches to risk assessment. New findings and methods, along with safety evaluations, are also acceptable. Special issues may be reserved to publish symposium summaries, reviews in toxicology, and overviews of the practical interpretation and application of toxicological data.