pH-Universal Electrocatalytic CO2 Reduction with Ampere-Level Current Density on Doping-Engineered Bismuth Sulfide

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zinan Jiang, Shan Ren, Xi Cao, Qikui Fan, Rui Yu, Jian Yang, Junjie Mao
{"title":"pH-Universal Electrocatalytic CO2 Reduction with Ampere-Level Current Density on Doping-Engineered Bismuth Sulfide","authors":"Zinan Jiang,&nbsp;Shan Ren,&nbsp;Xi Cao,&nbsp;Qikui Fan,&nbsp;Rui Yu,&nbsp;Jian Yang,&nbsp;Junjie Mao","doi":"10.1002/anie.202408412","DOIUrl":null,"url":null,"abstract":"<p>The practical application of the electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) to form formic acid fuel is hindered by the limited activation of CO<sub>2</sub> molecules and the lack of universal feasibility across different pH levels. Herein, we report a doping-engineered bismuth sulfide pre-catalyst (BiS-1) that S is partially retained after electrochemical reconstruction into metallic Bi for CO<sub>2</sub>RR to formate/formic acid with ultrahigh performance across a wide pH range. The best BiS-1 maintains a Faraday efficiency (FE) of ~95 % at 2000 mA cm<sup>−2</sup> in a flow cell under neutral and alkaline solutions. Furthermore, the BiS-1 catalyst shows unprecedentedly high FE (~95 %) with current densities from 100 to 1300 mA cm<sup>−2</sup> under acidic solutions. Notably, the current density can reach 700 mA cm<sup>−2</sup> while maintaining a FE of above 90 % in a membrane electrode assembly electrolyzer and operate stably for 150 h at 200 mA cm<sup>−2</sup>. In situ spectra and density functional theory calculations reveals that the S doping modulates the electronic structure of Bi and effectively promotes the formation of the HCOO* intermediate for formate/formic acid generation. This work develops the efficient and stable electrocatalysts for sustainable formate/formic acid production.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 32","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202408412","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The practical application of the electrocatalytic CO2 reduction reaction (CO2RR) to form formic acid fuel is hindered by the limited activation of CO2 molecules and the lack of universal feasibility across different pH levels. Herein, we report a doping-engineered bismuth sulfide pre-catalyst (BiS-1) that S is partially retained after electrochemical reconstruction into metallic Bi for CO2RR to formate/formic acid with ultrahigh performance across a wide pH range. The best BiS-1 maintains a Faraday efficiency (FE) of ~95 % at 2000 mA cm−2 in a flow cell under neutral and alkaline solutions. Furthermore, the BiS-1 catalyst shows unprecedentedly high FE (~95 %) with current densities from 100 to 1300 mA cm−2 under acidic solutions. Notably, the current density can reach 700 mA cm−2 while maintaining a FE of above 90 % in a membrane electrode assembly electrolyzer and operate stably for 150 h at 200 mA cm−2. In situ spectra and density functional theory calculations reveals that the S doping modulates the electronic structure of Bi and effectively promotes the formation of the HCOO* intermediate for formate/formic acid generation. This work develops the efficient and stable electrocatalysts for sustainable formate/formic acid production.

Abstract Image

在掺杂工程硫化铋上以安培级电流密度实现 pH 值通用电催化二氧化碳还原。
电催化二氧化碳还原反应(CO2RR)生成甲酸燃料的实际应用受到二氧化碳分子活化有限和不同 pH 值缺乏普遍可行性的阻碍。在此,我们报告了一种掺杂工程硫化铋前催化剂(BiS-1),该催化剂在电化学重构为金属 Bi 后,S 被部分保留,用于 CO2RR 生成甲酸/蚁酸,在广泛的 pH 值范围内具有超高性能。在中性和碱性溶液中,最好的 BiS-1 在 2000 mA cm-2 的流动池中保持了约 95% 的法拉第效率 (FE)。此外,在酸性溶液中,BiS-1 催化剂在电流密度为 100 至 1300 mA cm-2 时显示出前所未有的高法拉第效率(约 95%)。值得注意的是,在膜电极组件电解槽中,电流密度可达到 700 mA cm-2,同时 FE 保持在 90% 以上,并可在 200 mA cm-2 下稳定运行 150 小时。内光谱和密度泛函理论计算表明,S 掺杂调节了 Bi 的电子结构,有效地促进了 HCOO* 中间体的形成,从而生成甲酸/甲酸。这项研究为甲酸/甲酸的可持续生产开发了高效稳定的电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信