{"title":"N-acetylcysteine protects septic acute kidney injury by inhibiting SIRT3-mediated mitochondrial dysfunction and apoptosis.","authors":"Heng Fan, Jian-Wei Le, Min Sun, Jian-Hua Zhu","doi":"10.22038/IJBMS.2024.72882.15853","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To investigate the protective effect of N-acetylcysteine (NAC) on septic acute kidney injury (SAKI) via regulating Sirtuin3 (SIRT3)-mediated mitochondrial dysfunction and apoptosis.</p><p><strong>Materials and methods: </strong>By constructing SIRT3 knockout mice and culturing kidney tubular epithelial cells (KTECs), we assessed the changes of renal function and detected the protein expression of adenine nucleotide translocator (ANT), cyclophilin (CypD) and voltage-dependent anion channel (VDAC) using western-blotting, and simultaneously detected toll-like receptor 4 (TLR4), inhibitor of kappa B kinase (IKKβ), inhibitor of Kappa Bα (IκBα), and p65 protein expression. We observed mitochondrial damage of KTECs using a transmission electron microscope and assessed apoptosis by TdT-mediated dUTP Nick-End Labeling and flow cytometry.</p><p><strong>Results: </strong>SIRT3 deficiency led to the deterioration of renal function, and caused a significant increase in inducible nitric oxide synthase production, a decrease in mitochondrial volume, up-regulation of TLR4, IκBα, IKKβ, and p65 proteins, and up-regulation of ANT, CypD and VDAC proteins. However, NAC significantly improved renal function and down-regulated the expression of TLR4, IκBα, IKKβ, and p65 proteins. Furthermore, SIRT3 deficiency led to a significant increase in KTEC apoptosis, while NAC up-regulated the expression of SIRT3 and inhibited apoptosis.</p><p><strong>Conclusion: </strong>NAC has a significant protective effect on SAKI by inhibiting SIRT3-mediated mitochondrial dysfunction and apoptosis of KTECs.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11127075/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/IJBMS.2024.72882.15853","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To investigate the protective effect of N-acetylcysteine (NAC) on septic acute kidney injury (SAKI) via regulating Sirtuin3 (SIRT3)-mediated mitochondrial dysfunction and apoptosis.
Materials and methods: By constructing SIRT3 knockout mice and culturing kidney tubular epithelial cells (KTECs), we assessed the changes of renal function and detected the protein expression of adenine nucleotide translocator (ANT), cyclophilin (CypD) and voltage-dependent anion channel (VDAC) using western-blotting, and simultaneously detected toll-like receptor 4 (TLR4), inhibitor of kappa B kinase (IKKβ), inhibitor of Kappa Bα (IκBα), and p65 protein expression. We observed mitochondrial damage of KTECs using a transmission electron microscope and assessed apoptosis by TdT-mediated dUTP Nick-End Labeling and flow cytometry.
Results: SIRT3 deficiency led to the deterioration of renal function, and caused a significant increase in inducible nitric oxide synthase production, a decrease in mitochondrial volume, up-regulation of TLR4, IκBα, IKKβ, and p65 proteins, and up-regulation of ANT, CypD and VDAC proteins. However, NAC significantly improved renal function and down-regulated the expression of TLR4, IκBα, IKKβ, and p65 proteins. Furthermore, SIRT3 deficiency led to a significant increase in KTEC apoptosis, while NAC up-regulated the expression of SIRT3 and inhibited apoptosis.
Conclusion: NAC has a significant protective effect on SAKI by inhibiting SIRT3-mediated mitochondrial dysfunction and apoptosis of KTECs.
期刊介绍:
The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.